Abstract:
A multilayer printed circuit board comprising conductive layers separated by dielectric insulation layers, at least one conductive layer being patterned and parts of conducting layers being interconnected by means of vias traversing insulation layers, and at least one component having terminals electrically connected with conducting layers is countersunk at least partly in a cavity having a floor and side walls, whereby a first component is completely countersunk in the cavity with its terminals connected face-down directly with contacts on the floor of the cavity and at least one further component is stacked above the first component, whereby an edge of the lower surface of the second component projecting over the upper surface area of the at least one further component is provided with terminals being connected directly face-down with contacts of the circuit board arranged on a level higher than the floor of the cavity.
Abstract:
A docking device for a hard disk has a protective box housing an electronic unit including a printed circuit card and a fan arranged in or in the vicinity of an opening formed in a first wall of the protective box. The box also has a location for a hard disk. The fan is arranged in the vicinity of an edge of the printed circuit card so that the air stream driven by said fan sweeps over both main faces of the printed circuit card. The guide is designed to guide at least a portion of the air stream driven by the fan directly to the location for a hard disk.
Abstract:
A substrate structure including a carrier and a substrate is provided. The carrier includes a release layer, a dielectric layer and a metal layer. The dielectric layer is disposed between the release layer and the metal layer. The substrate includes a packaging region and a peripheral region. The peripheral region is connected to the packaging region and surrounds the packaging region. The peripheral region or the packaging region has a plurality of through holes. The substrate is disposed on the carrier. The release layer is located between the substrate and the dielectric layer. The release layer and the dielectric layer are filled in the through hole such that the substrate is separably attached to the carrier.
Abstract:
A circuit board includes a board having a hole formed therein, and an imager that is bonded to a first region including at least a portion of the hole in a front surface of the board.
Abstract:
A wiring substrate is provided with a substrate core including a first main surface, a second main surface, and a through hole. An electronic component is arranged in the through hole. A projection projects from a wall of the through hole toward a connection terminal of the electronic component. An insulator is filled between the wall of the through hole and the electronic component. A first insulation layer covers the electronic component and the first main surface. A second insulation layer covers the electronic component and the second main surface. The electronic component includes an electronic component body and the connection terminal formed on a side of the electronic component body. The connection terminal of the electronic component includes an engagement groove formed by the projection and extending along a direction in which the electronic component is fitted into the through hole.
Abstract:
According to one embodiment, a grounding gasket includes a main body and a projecting part. The main body is configured to be interposed between a ground part and a substrate and contact the ground part and the substrate. The projecting part projects from the main body. The projecting part is configured to extend through a through-hole which is opened in the substrate, project to a side opposite to a side on which the ground part is located, and contact a conductive component mounted on the substrate.
Abstract:
A method for integrating a component into a printed circuit board includes the following steps: providing two completed printed circuit board elements, which more particularly consist of a plurality of interconnected plies or layers, wherein at least one printed circuit board element has a cutout or depression, arranging the component to be integrated on one of the printed circuit board elements or in the cutout of the at least one printed circuit board element, and connecting the printed circuit board elements with the component being accommodated in the cutout, as a result of which it is possible to obtain secure and reliable accommodation of a component or sensor in a printed circuit board. Furthermore, a printed circuit board of this type comprising an electronic component integrated therein is provided.
Abstract:
The invention relates to a lighting element, wherein at least one organic light-emitting diode is formed at an optically transparent substrate as a layer structure. In the lighting element in accordance with the invention, at least one organic light-emitting diode is formed at an optically transparent substrate as a layer structure. The at least one organic light-emitting diode and the substrate are connected to a circuit board and electric contact elements for the connection of the electrodes of the organic light-emitting diode(s) are present at the surface of the circuit board. The surface of the circuit board facing in the direction of the organic light-emitting diode(s) is provided over its full area with a metallic coating as a permeation barrier. The metallic coating is only breached by electric insulators formed about the contact elements.
Abstract:
A single element electrical connector includes a single conductive contact element formed into a cage structure having a wire insert end and a wire contact end along a longitudinal centerline axis of the connector. The cage structure defines an upper pick-up surface having a surface area suitable for placement of a suction nozzle of a vacuum transfer device, as well as a pair of contact tines biased towards the centerline axis to define a contact pinch point for an exposed core of a wire inserted into the connector. A contact surface is defined by a member of the cage structure for electrical mating contact with a respective contact element on a component on which the connector is mounted.
Abstract:
A circuit assembly includes a substrate having a substrate electrical circuit, opposite top and bottom substrate surfaces, and a substrate hole extending through the substrate. The circuit assembly also includes a discrete component assembly electrically connected to the substrate electrical circuit and a support member attached to the discrete component. At least a portion of the discrete component is physically mounted in the substrate hole.