Abstract:
A multi-layer printed circuit board has a number of landing pads that are configured to engage a connector secured thereto. Between the landing pads associated with different signals is at least one micro via that is electrically connected to a ground plane on an outer surface of the multi-layer printed circuit board, and a ground plane on an inner layer of the multi-layer printed circuit board.
Abstract:
A device with low dielectric absorption includes a printed circuit board (PCB), a component connection area including a first conductor layered on a top surface of the component connection area and a second conductor layered on a bottom surface of the component connection area, an aperture surrounding the component connection area, a low-leakage component connecting the component connection area to the PCB across the aperture, and a guard composed of a third conductor at least substantially surrounding the aperture on a top surface of the PCB and a fourth conductor at least substantially surrounding the aperture on a bottom surface of the PCB.
Abstract:
A connector includes a housing including a conductive material, a base connected to the housing and including a base center hole and a base groove extending from the base center hole to an edge of the base, a center pin including a first portion and a second portion extending perpendicular or substantially perpendicular to the first portion, and a dielectric. The dielectric includes a first portion extending through the base center hole and including a dielectric center hole through which the first portion of the center pin extends and a second portion extending perpendicular or substantially perpendicular to the first portion of the dielectric along the base groove and including a dielectric groove along which the second portion of the center pin extends.
Abstract:
An electronic device contains electrical circuits. The circuits may include circuitry on printed circuit boards and components such as a touch screen display and buttons. Signal paths for routing signals between the electrical circuits may be formed from metal traces on flexible printed circuit cables. The flexible printed circuit cables may be bent around one or more bend axes. A flexible printed circuit cable may be formed from a flexible polymer substrate having one or more layers of polymer. Upper and lower ground layers may be supported by the flexible polymer substrate. The metal traces for the signal paths may lie between the upper and lower ground layers. Longitudinal slits within the flexible printed circuit may be formed that pass through the ground layers and the polymer layers. Vias may be formed that couple the ground layers together. The vias may run along the edges of the slits.
Abstract:
A blind-mate capacitive coupling interconnection between a main module enclosure one or more sub-module enclosures has coupling surfaces each with a ground portion and an aperture, an inner element provided in the aperture, spaced away from the ground portion. The coupling surfaces may be provided, for example, as traces on a printed circuit board. To accommodate a degree of mis-alignment, one of the inner elements may be provided larger than the other. Capacitive coupling between the coupling surfaces occurs when the coupling surfaces are mated together, retained in position, for example, by a mechanical fixture.
Abstract:
A flexible circuit board includes: an insulative substrate having a first surface and a second surface opposite to the first surface; a microstrip line having a first signal line formed on the first surface and a first ground pattern formed on the second surface and located in an area opposite to the first signal line; a coplanar line having a second signal line formed on the first surface, and second ground patterns that are formed on the first surface and are spaced apart from both sides of the second signal line; a connection line that is formed on the first surface and connects the first signal line and the second signal line together, the connection line having an opening; and third ground patterns formed on the second surface and arranged in areas located at both sides of an area opposite to the connection line including the opening.
Abstract:
In accordance with the various embodiments disclosed herein, an improved electrical connector footprints, such as printed circuit boards (printed circuit board), is described comprising one or more of, for example, a first linear array containing at least a first anti-pad extending along a first direction, a first electrical signal trace extending along the first direction and spaced from the first linear array along a second direction that is perpendicular to the first direction, a group of ground isolation vias containing at least one electrically conductive ground via arranged along a line extending parallel to the first direction and spaced from the first electrical signal trace along the second direction, and a second linear array containing at least a second anti-pad extending along the first direction spaced from the group of ground isolation vias along the second direction.
Abstract:
A high-frequency signal line includes an element assembly including a plurality of insulator layers, a linear signal line provided in or on the element assembly, a first ground conductor provided in or on the element assembly and extending along the signal line, and a plurality of floating conductors provided in or on the element assembly on a first side in a direction of lamination relative to the signal line and the first ground conductor, so as to be arranged along the signal line in an orientation crossing the signal line when viewed in a plan view in the direction of lamination. The floating conductors are opposite to the signal line and the first ground conductor with at least one of the insulator layers positioned therebetween, the floating conductors being connected to neither the signal line nor the first ground conductor. A capacitance is created between the first ground conductor and each of the floating conductors, and has a greater value than a capacitance created between the signal line and the floating conductor.
Abstract:
A printed circuit board (PCB) includes a ground layer, a first layer, a second layer, a connector footprint, and a pair of differential signal lines. The connector footprint comprises first and second bonding pads. The PCB defines a first signal via in a central portion of a space bounded by the first bonding pad, and a second signal via in a central portion of a space bounded by the second bonding pad. A number of first ground vias on the first bonding pad and a number of second ground vias on the second bonding pad are electrically connected to the ground layer. First annular slots surrounding corresponding first ground via are defined in the ground layer. Second annular slots surrounding corresponding second ground vias are defined in the ground layer. Connection slots are defined in the ground layer and communicate between the first annular slots and the second annular slots.
Abstract:
An electrical connector assembly including a printed circuit board that has base and cover layers of dielectric material and first and second ground planes of conductive material. The base and cover layers are stacked relative to each other and located between the first and second ground planes. The base layer has a conductor-receiving portion that extends beyond the cover layer. The circuit board also includes signal traces that are exposed to an open space that exists above the conductor-receiving portion. The connector assembly also includes a compression component that is configured to be positioned in the open space to press wire-terminating ends of signal conductors onto the signal traces at the conductor-receiving portion.