Abstract:
Disclosed herein is a printed circuit board including an electronic component embedded therein, as the electronic component is supported on the metal layer of core substrate, thus supporting and radiation performances are improved, production costs are reduced, and the manufacturing process is simplified.
Abstract:
An RF electronic component for mounting on a substrate includes a housing; and at least one electronic device having an input and/or output incorporated in the housing. At least one input/output terminal connects to a connection pad on the substrate; and an electrical transition provides an electrical connection between the input/output terminal and an input/output of an electronic device incorporated in the electronic component. The electrical transition comprises a side termination at least partially located on an outer surface of the housing; and an array of conductive through holes formed inside the housing at an offset from the side termination. The array is arranged so that the axes of the through holes are substantially mutually parallel and coplanar, and the array of through holes is connected to form a ground plane at the offset from the side termination.
Abstract:
In a structure for mounting a first feedthrough capacitor and a second feedthrough capacitor on a mounting surface of a substrate, the first and second feedthrough capacitors are disposed so as to be substantially parallel and to face each other in their partial regions, and a current in the partial region of the first feedthrough capacitor flows in a direction opposite to that in the partial region of the second feedthrough capacitor.
Abstract:
Provided is a simplified structure of a circuit device in which a power element generating a large amount of heat is incorporated. The circuit device according to the present invention includes: a circuit board whose surface is covered with an insulating layer; a conductive pattern formed on the surface of the insulating layer; a circuit element electrically connected to the conductive pattern; and a lead connected to a pad formed of the conductive pattern. Furthermore, a power element is fixed to the top surface of a land portion formed of a part of the lead. Accordingly, the land portion serves as a heat sink, thereby contributing to heat dissipation.
Abstract:
A display apparatus including a circuit board and a surface grounded portion which is disposed on an end portion of the circuit board and formed of a conductive layer. The display apparatus may include a signal receiver mounted on the circuit board, the signal receiver receiving a signal. The display apparatus may include a signal processor mounted on the circuit board, the signal processor processing signals received by the signal receiver.
Abstract:
A board mounted structure of a vibration motor which self aligns along with melting of cream solder even if deviation occurs in positioning of the flat bottom surface of a metal holder frame and a fastening pattern at the time of automatic mounting, that is, a board mounted structure having a vibration motor having a metal holder frame into which a motor case is fit and a pair of external terminal pieces attached to a plastic end cap and a printed circuit board having a fastening pattern shaped left-right symmetric about a center line and superposed with a bottom surface of the metal holder frame and power feed patterns adjoining this fastening pattern, arranged left-right symmetrical with respect to a center line, and superposed with corresponding external terminal pieces, the metal holder frame having front projecting pieces and a back projecting piece at its flat bottom surface, the fastening pattern having front extending pattern surfaces superposed with corresponding front projecting pieces and a back extending pattern surface superposed with the back projecting piece at its main fastening pattern surface.
Abstract:
A high frequency electronic component comprises a layered substrate. On the bottom surface of the layered substrate, there are provided a plurality of functional terminals for inputting and outputting signals relating to functions of a circuit inside the layered substrate, a plurality of ground terminals, a plurality of terminals that are not connected to external circuits, and a conductor section for grounding. The conductor section for grounding includes: a center portion located in a region surrounded by a plurality of terminals; and a plurality of coupling portions for coupling the center portion to the terminals.
Abstract:
A printed circuit board on which a connector is mounted includes a conductive layer, insulating layers, and a supporting member. A part of the conductive layer is exposed on a top surface of the PCB in order to form a connecting pad portion for connecting the connector. The insulating layers are disposed proximate to both sides of the conductive layer. The supporting member is connected to the conductive layer and covers a surface of a hole formed by opening an orifice through the conductive layer and the insulating layer. The hole is disposed adjacent to the connecting pad portion.
Abstract:
An optical module of the present invention includes: a semiconductor device 14; a grounded metal member 10 for mounting the semiconductor device 14 thereon; a substrate 16 for mounting the grounded metal member 10 thereon; and a lead pin 18 fixed to and insulated from the grounded metal member 10 and soldered to the substrate 16, the lead pin 18 being used to supply power to the semiconductor device 14; wherein the grounded metal member 10 has a protrusion on a surface thereof facing the substrate 16; and wherein the protrusion of the grounded metal member 10 is in contact with the substrate 16.
Abstract:
A QFN package with improved joint solder thickness for improved second level attachment fatigue life. The copper leadframe of a QFN chip carrier is provided with rounded protrusions in both the chip attach pad region and the surrounding lead regions before second level attachment. The rounded stand-off protrusions are formed from the copper itself of the copper of the leadframe. This may be achieved by punching dimples into one surface of the copper plate of the leadframe before plating to form protrusions on the opposing surface. This method of forming the rounded protrusions simplifies the process of forming stand-offs. The protrusions provide a structure that increases wetting area and allows the use of a larger quantity of solder for increased solder joint thickness and better die paddle solder joint area coverage. As a result of the increased solder joint thickness, second level fatigue life is significantly improved. As a result of the improved die paddle solder joint area coverage, improved thermal performance of the chip carrier is also significantly improved.