Abstract:
The present application discloses a system comprising a compact curved grating (CCG) and its associated compact curved grating spectrometer (CCGS) or compact curved grating wavelength multiplexer/demultiplexer (WMDM) module and a method for making the same. The system is capable of achieving a very small (resolution vs. size) RS factor. The location of the entrance slit and detector can be adjusted in order to have the best performance for a particular design goal. The initial groove spacing is calculated using a prescribed formula dependent on operation wavelength. The location of the grooves is calculated based on two conditions. The first one being that the path-difference between adjacent grooves should be an integral multiple of the wavelength in the medium to achieve aberration-free grating focusing at the detector or a first anchor output slit even with large beam diffraction angle from the entrance slit or input slit, the second one being specific for a particular design goal of a curved-grating spectrometer.
Abstract:
A spectral colorimetric apparatus includes a housing which includes a side wall. An outer surface of the side wall is an adjustment surface capable of adjusting a position of a linear sensor by moving while attaching the linear sensor to the adjustment surface. The linear sensor is supported by the side wall of the housing while abutting on the adjustment surface and receives alight beam that is dispersed by a concave surface reflection type diffraction element and passes through an opening portion. The adjustment surface is parallel to a tangential line at a part of a Rowland circle of the concave surface reflection type diffraction element, through which a light beam received by the linear sensor passes.
Abstract:
The invention relates to a spectrometer comprising a hollow main optical body having at least one light channel, a light source, a diffraction grating having a grating central point, a light inlet opening, and a detector unit, which are arranged in such a way that the focal curve of the spectrometer satisfies the back focus equation. In order to create a spectrometer having sufficient spectral resolution from a low-price, light, and easy-to-process material, which spectrometer is able to operate in a large temperature interval even without thermostatic control, according to the invention the light inlet opening is arranged on a compensation body, the compensation body is arranged in the light channel and fastened to the main optical body between the light source and the diffraction grating, and the compensation body is dimensioned in such a way that the compensation body changes the distance between the light inlet opening and the grating central point when the main optical body thermally expands.
Abstract:
A grating spectrometer employing digital control of an oscillating component (a mirror) and phase-locked digital recording of the intensity profile within the narrow spectral domain defined by an oscillation frequency. Flexible choice of oscillation frequency permits measurement in a quiet region of the noise spectrum. Reference waveforms acquired with the same insturment can be stored and later used to deconvolute a more complex spectrum. The use of multiple detector/slit combinations along a Rowland circle makes the spectrometer sensitive to specific atomic elements.
Abstract:
A 1:1 Offner mirror system for imaging off-axis objects is modified by replacing a concave spherical primary mirror that is concentric with a convex secondary mirror with two concave spherical mirrors M1 and M2 of the same or different radii positioned with their respective distances d1 and d2 from a concentric convex spherical diffraction grating having its grooves parallel to the entrance slit of the spectrometer which replaces the convex secondary mirror. By adjusting their distances d1 and d2 and their respective angles of reflection .alpha. and .beta., defined as the respective angles between their incident and reflected rays, all aberrations are corrected without the need to increase the spectrometer size for a given entrance slit size to reduce astigmatism, thus allowing the imaging spectrometer volume to be less for a given application than would be possible with conventional imaging spectrometers and still give excellent spatial and spectral imaging of the slit image spectra over the focal plane.
Abstract:
An active monolithic optical device for wavelength division multiplexing (WDM) incorporating diode laser arrays, an output coupling waveguide and a curved Rowland circle based grating to produce a plurality of individual laser beams at slightly different wavelengths is integrated in a common electro-optic material. The wavelength of each laser source is determined by the geometry of the array and the diffraction grating design. The output of all the channels can be collected into a concentrator or lens to be multiplexed in a single output. Applications include a WDM optical amplifier and WDM laser source.
Abstract:
The subject of the invention is a spectroscopic analysis device comprising a light source, a light analyzer comprising an entrance slit, a diffraction grating and at least one exit slit which are disposed along a Rowland circle, and an optical transmission system.According to the invention, the entrance slit (3) is mounted so as to be displaceable along the Rowland circle (1), on either side of a central position, the optical transmission system comprises a first, fixed part (I) associated with the light source (5; 8) and a second, movable part (II) associated with the entrance slit (3) and mounted so as to be displaceable parallel to itself in a direction (a.sub.1, a.sub.2 ; b.sub.1, b.sub.2 ; c.sub.1, c.sub.2) parallel to the tangent (T) to the Rowland circle (1) at the central position of the entrance slit (3), and the device comprises means for controlling the displacement, in synchronism, of the entrance slit (3) along the Rowland circle (1) and of the movable part (II), parallel to the tangent (T), with maintenance of the direction of the optical axis of the assembly.
Abstract:
An improvement in the measuring elements of closed circuit systems for controlling-correcting printing in offset printing machines is provided. The values of measurements are amplified, analogically commutated, converted from analog to digital form, and then microprocessed so as to be compared with standard values established in a memory program provided for each one of the valves controlling the printers block of each one of the printing bodies. A reading is taken decomposed into three variables, each one of which corresponds to one of the three basic colors of the visible spectrum in which the light from the colored stain is diffracted by means of a ROWLAND diffraction grating in which there is reflected the light from optical fibers arranged at 45.degree. angles with respect to the printing paper, and which direct a beam of light on the colored stain. At the point of convergence of each one of the diffracted colors, there is arranged a photo pickup device whose signal is amplified by a logarithmic amplifier and connnected to a digital signal which is sent to a microprocessor for processing.
Abstract:
OPTICAL SPECTROMETERS CURRENTLY EMPLOY PHOTODETECTING DEVICES TO CHARGE CAPACITOR IN MEASURING THE INTENSITY OF MONITORED LINE SPECTRA. THE RADIANT ENERGY FALLING UPON THE PHOTODETECTORS, IN ADDITION TO THE SPECTRAL LINE OF INTEREST ALSO INCLUDES BACKGROUND ENERGY WHICH IS THE BANDSPECTRA SUPERIMPOSED ON THE LINE SPECTRA. THE BACKGROUND AMOUNTS TO NOISE AND ADVERSELY AFFECTS THE ACCURACY OF THE INSTRUMENT. THIS INVENTION INVOLVES THE ELIMINATION OF THE BACKGROUND NOISE BY OSCILLATING THE LINE SPECTRA ACROSS THE SLIP AND SEQUENTIALLY CHARGING AND DISCHARGING THE MEASURING CAPACI-
TORS ASSOCIATED WITH THE PHOTODETECTORS TO AVERAGE OUT THE BACKGROUND NOISE.