Abstract:
This coating system (2) for coating a workpiece (W1) with a liquid coating product, includes an ultrasonic spray head (14) for generating droplets of coating products, an electrode (32A) for generating an electrostatic field (E) between the electrode and the ultrasonic spray head (14) and a high-voltage generator (52) connected to the electrode for supplying the electrode with high voltage. The shape of the electrode (32A) is advantageously configurable on the basis of the geometry of the workpiece (W1).
Abstract:
An electrical field is generated between an application device and an object to be coated. At least one corona electrode associated with the application device is connected to ground, and at least one counter electrode associated with the object is connected at least at intervals to a positive potential. A system for electrostatically coating objects having an application device coating material, and an electrical field device having a high-voltage source which generates an electrical field between the application device and an object to be coated. The field device comprises at least one corona electrode associated with the application device, and at least one counter electrode associated with the object, wherein, during the operation of the device, the at least one corona electrode is connected to ground, and the at least one counter electrode is connected at least at intervals to a positive potential.
Abstract:
A method of stripping, prepping and coating a surface comprises first stripping the exiting coating from a surface, using continuous or pulsed fluid jet, followed by prepping the surface by the same fluid jet. The method also provides entraining particles into a fluid stream, if desired to generate a particle-entrained fluid stream that is directed at the surface to be stripped and prepped. The particles act as abrasive particles for prepping the surface to a prescribed surface roughness required for subsequent application of a coating to the surface. The method then entails coating the surface by electrically charging particles having the same chemical composition as the particles used to prep the surface. Finally, a charged-particle-entrained fluid stream is directed at high speed at the charged surface to coat the surface. The particles form both mechanical and electronic bonds with the surface.
Abstract:
A control device for a powder spray coating device and a powder spray coating device are specified. With the aim of ensuring operational reliability during the coating operation of the powder spray coating device, while at the same time preserving the required coating efficiency, the solution according to the invention provides for the control device an assessment device, an enabling device and a first communication interface, the assessment device being designed for assessing on the basis of at least one code received from the powder spray coating device by means of the first communication interface whether or not reliable operation of the powder spray coating device is ensured and passing on the assessment result to the enabling device, the enabling device being designed in turn for enabling operation if the assessment result is positive.
Abstract:
A coating device comprises at least one application apparatus to discharge a coating agent from at least one coating agent nozzle. The application apparatus is configured to apply an oscillation to at least one of the coating agent and at least one coating agent jet such that at least one of the coating agent and the at least one coating agent jet break up into droplets.
Abstract:
An electrostatic application apparatus 100 comprises a tubular electrode 1 forming a first flow path F1 whose inner surface is formed of an electrically conductive wall; a counter electrode 20 placed to block an extension of an axis line of the first flow path F1; a power source 30 applying a voltage between the tubular electrode 1 and the counter electrode 20, and a liquid supply unit 40 supplying a liquid to the first flow path F1. If an axial length of the first flow path F1 is L1 and an inside diameter of the first flow path F1 is D1, then L1/D1 is 35 or more, the inside diameter D1 of the first flow path is 0.5 to 2.0 mm, and the length L1 of the first flow path is 20 to 100 mm.
Abstract:
A coating device comprises at least one application apparatus to discharge a coating agent from at least one coating agent nozzle. The application apparatus is configured to apply an oscillation to at least one of the coating agent and at least one coating agent jet such that at least one of the coating agent and the at least one coating agent jet break up into droplets.
Abstract:
A system including an electrostatic spray system, including a tank configured to carry a fluid, a power supply system coupled to the tank and configured to electrically charge the fluid while spraying, and a manual actuator coupled to the power supply system, wherein the manual actuator is configured to drive power production by the power supply system.
Abstract:
A high voltage controller configured to drive a high voltage generator. The high voltage controller includes a voltage select input and a current select input, an actual voltage input and an actual current input. First circuitry is configured to generate an alternating current (AC) drive signal. Second circuitry configured to generate a direct current (DC) drive signal. Closed loop control circuitry is configured to adjust the DC drive signal based on at least one of the voltage select and current select inputs and at least one of the actual voltage and actual current inputs. The first circuitry may include a push-pull circuit. The second circuitry may include a pulse width modulation (PWM) controller. A high voltage generator may be coupled to the AC and DC drive signals. The high voltage generator may include a high voltage transformer having a pair of primary windings and center tap. The AC drive signal may be coupled to the primary windings and the DC drive signal may be coupled to the center tap.