Abstract:
A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150°. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.
Abstract:
A process for the manufacture of nanoporous silica dielectric films by vapor deposition of silica precursors on a substrate. The process provides for vaporizing at least one alkoxysilane composition; depositing the vaporized alkoxysilane composition onto a substrate; exposing the deposited alkoxysilane composition to a water vapor, and either an acid or a base vapor; and drying the exposed alkoxysilane composition, thereby forming a relatively high porosity, low dielectric constant, silicon containing polymer composition on the substrate.
Abstract:
A coating powder based on an epoxy resin is applied to a substrate and fused and cured thereon. Curing is effected by exposing the coating powder at the point of application to a fluid curative or cure catalyst, e.g., by exposing the fusing coating powder to an ammonia-containing atmosphere.
Abstract:
Conductive substrate having on their surface a coating formed from a coating solution for forming a transparent conductive coating prepared by dispersion of dissolving in water and/or organic solvent such conductive particles as having (a) an average particle diameter of not more than 500 .ANG., wherein (b) an amount of particles having a particle diameter of not more than 600 .ANG. is more than 60% by weight, (c) an amount of particles having a particle diameter of not more than 100 .ANG. is more than 5% by weight and (d) an amount of particles having a particle diameter of more than 1000 .ANG. is not more than 15% by weight, and a matrix comprising a silica polymer having (A) an average degree of polymerization of 1,500-10,000, and (B) an amount of the polymer having a degree of polymerization of not more than 3,000 being not more than 50% by weight, and (C) an amount of the polymer having a degree of polymerization of more than 10,000 being not more than 20% by weight, are excellent in adhesion and surface smoothness and also excellent in durability and transparency. Display devices provided with the above-mentioned transparent conductive substrates as the display panel are excellent in resolving power, and give constantly clear and sharp images.
Abstract:
An apparatus is provided with a chamber (20) into which a plurality of jets of moisture-laden air is directed through apertures (nozzles) 18. Through the chamber lasted shoes S, on the bottoms of which a coating of a moisture-curable adhesive composition has been applied, are progressively moved, supported bottom uppermost. The velocity of the air, which is re-circulated, is between 10 and 20 meters/second (measured at the apertures), its temperature is between 85.degree. C. and 125.degree.0 C. (measured at the point of impingement on the article) and its dew point not greater than 60.degree. C. The lasted shoes are subjected to this treatment for a period of 1 to 31/2 minutes.
Abstract:
Disclosed is a chamber which defines a constant gas flow environment for passing objects therethrough carried by a conveyor. The chamber comprises an elongate housing having an inlet opening and an outlet opening in the longitudinal direction and a moving conveyor which runs the length of said housing for transporting object from said inlet opening through said housing and thereout through said outlet opening, the space below said conveyor being enclosed and connected to a source of exhaust for exhausting gaseous substances therein. The space above the conveyor comprises an inlet zone, a central gas zone, and an outlet zone. The inlet zone and the outlet zone both are of a bi-cameral containment arrangement comprising an outer adjustable gate for determining the inlet opening, a central adjustable baffle gate, and an inner deflector wall. The space between the outer gate and the baffle gate is connected to a source of exhaust. The space between the baffle gate and the deflector wall is a modulating gas cell which contains a gas knife connected to a source of inert gas and capable of injecting said inert gas at an adjustable angle onto the conveyor substantially its entire width. The central gas flow zone operates under external recycle of its atmosphere in a direction countercurrent to the direction of the conveyor belt which passes therethrough. The chamber is ideally suited for vapor permeation curing of flat substrates coated with a vapor permeation curable coating.
Abstract:
Process for coating flexible substrates which comprises applying a finishing polyurethane-polyurea elastomer coating to a release surface, applying an undercoat of a polyurethane-polyurea elastomer having a different composition than the finishing coating on the finishing coating and applying a flexible substrate to the undercoating.The polyurethane-polyurea elastomers used as the finishing coat are prepared by forming a polyether-polyol prepolymer in which the polyol consists essentially of a diol or a mixture of diols and which prepolymer is subsequently reacted with an aromatic diamine.The polyurethane-polyurea elastomers used to form the undercoat are obtained by reacting the aromatic diamine with a polyether-polyol prepolymer in which the polyol consists essentially of one having an hydroxyl functionality of at least 3 or a mixture of polyols in which at least one of the polyols has a hydroxy functionality greater than 2 in a sufficient amount to increase the resistance to flexing.The coated flexible substrates are useful in many areas as is known for polyurethane or polyurea coated substrates generally, but the coated flexible substrates, according to this invention, are particularly useful in the manufacture of shoe uppers.
Abstract:
A method is provided for coating or filling a porous material. According to one embodiment, the method includes providing the porous material, delivering precursor molecules by gas phase exposure into pores of the porous material, and reacting the precursor molecules to form a polymer inside the pores.
Abstract:
The invention includes a method for preparing and top coating an item made of powder coated MDF (or other substrate containing wood) with the end result of improved visual and tactile smoothness; the invention includes the steps of cutting and machining the part, pre-powder preparation and sanding of the part, powder coating the part, post-powder preparation and sanding, and applying the liquid top coat to the part, resulting in a smoother finish than is currently available in any other powder coated MDF finish while requiring less coats than similar liquid paint finishes.
Abstract:
The disclosure relates to a method for coating a substrate with a lacquer. First, the lacquer is uniformly applied to the substrate. Then, the solvent proportion of the lacquer applied to the substrate is reduced, and the coated substrate is exposed to a solvent atmosphere. In some embodiments, the lacquer is heated. The invention also relates to a device for planarising a lacquer layer.