Abstract:
Described herein is a method for producing a quartz glass crucible, including the steps of: preparing a crucible base material that is made of quartz glass and has a crucible shape; producing a synthetic quartz glass material by the direct process or the soot process; processing the synthetic quartz glass material into a crucible shape without pulverizing the synthetic quartz glass material; and welding the synthetic quartz glass material processed into the crucible shape to the inner surface of the crucible base material. As a result, there are provided a quartz glass crucible that avoids generation of dislocation in a silicon single crystal, the generation of dislocation caused by the crucible itself, at the time of production of a silicon single crystal and has high heat resistance, a method for producing the quartz glass crucible, and a method for producing a silicon single crystal, the method using such a quartz glass crucible.
Abstract:
Ultralow expansion titania-silica glass. The glass has high hydroxyl content and optionally include one or more dopants. Representative optional dopants include boron, alkali elements, alkaline earth elements or metals such as Nb, Ta, Al, Mn, Sn Cu and Sn. The glass is prepared by a process that includes steam consolidation to increase the hydroxyl content. The high hydroxyl content or combination of dopant(s) and high hydroxyl content lowers the fictive temperature of the glass to provide a glass having a very low coefficient of thermal expansion (CTE), low fictive temperature (Tf), and low expansivity slope.
Abstract:
A single-crystal silicon pulling silica container including: a transparent silica glass layer in the inner side of the silica container; and an opaque silica glass layer containing gaseous bubbles in the outer side of the silica container, wherein the transparent layer constitutes of a high-OH group layer placed on an inner surface side of the silica container containing the OH group at a concentration of 200 to 2000 ppm by mass and a low-OH group layer having the OH group concentration lower than the high-OH group layer containing Ba at a concentration of 50 to 2000 ppm by mass. Resulting in the silica container used for pulling single-crystal silicon, providing the silica container improves etching corrosion resistance of the container inner surface to silicon melt when the entire inner surface of transparent silica glass of the container is crystallized short after using the container and method for such silica container.
Abstract:
A method for producing rod lenses with an enveloping diameter of the rod lens face of up to 200 mm and an edge length of at least 800 mm. The method is characterized in that fabrication is performed from a cylindrical rod lens element made from synthetic quartz glass material configured as a fused silica ingot. This is performed using a flame hydrolysis method with a direct one stage deposition process of SIOx particles from a flame stream onto die that rotates and is moveable in a linear manner with respect to the flame stream.
Abstract:
The invention relates to a silica glass compound having improved physical and chemical properties. In one embodiment, the present invention relates to a silica glass having a desirable brittleness in combination with a desirable density while still yielding a glass composition having a desired hardness and desired strength relative to other glasses. In another embodiment, the present invention relates to a silica glass composition that contains at least about 85 mole percent silicon dioxide and up to about 15 mole percent of one or more dopants selected from F, B, N, Al, Ge, one or more alkali metals (e.g., Li, Na, K, etc.), one or more alkaline earth metals (e.g., Mg, Ca, Sr, Ba, etc.), one or more transition metals (e.g., Ti, Zn, Y, Zr, Hf, etc.), one or more lanthanides (e.g., Ce, etc.), or combinations of any two or more thereof.
Abstract:
A process for producing a synthetic silica glass optical component which contains at least 1×1017 molecules/cm3 and has an OH concentration of at most 200 ppm and substantially no reduction type defects, by treating a synthetic silica glass having a hydrogen molecule content of less than 1×1017 molecules/cm3 at a temperature of from 300 to 600° C. in a hydrogen gas-containing atmosphere at a pressure of from 2 to 30 atms.
Abstract translation:一种合成石英玻璃光学部件的制造方法,其通过处理氢分子含量少的合成二氧化硅玻璃,其含有至少1×10 17分子/ cm 3,OH浓度为200ppm以下,基本上无还原型缺陷 在含有氢气的气氛中,在2-30atms的压力下,在300-600℃的温度下,比1×1017分子/ cm 3。
Abstract:
A titania-doped quartz glass suited as an EUV lithographic member is prepared by feeding a silicon-providing reactant gas and a titanium-providing reactant gas through a burner along with hydrogen and oxygen, subjecting the reactant gases to oxidation or flame hydrolysis to form synthetic silica-titania fine particles, depositing the particles on a rotating target, and concurrently melting and vitrifying the deposited particles to grow an ingot of titania-doped quartz glass. The target is retracted such that the growth front of the ingot may be spaced a distance of at least 250 mm from the burner tip.
Abstract:
The present invention is to provide a TiO2—SiO2 glass having suitable thermal expansion properties as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass having a temperature, at which a coefficient of thermal expansion is 0 ppb/° C., falling within the range of 23±4° C. and a temperature width, in which a coefficient of thermal expansion is 0±5 ppb/° C., of 5° C. or more.
Abstract:
The aim of the invention is to improve a generally known method for producing quartz glass doped with fluorine, wherein SiO2 particles are formed in the presence of fluorine by means of a plasma deposition process, deposited in layers on an outer envelope of a cylindrical quartz glass substrate body rotating about its longitudinal axis, and vitrified to form a layer of quartz glass with a fluorine content of at least 1.5 wt. %, in such a way that a quartz glass semifinished product with a high fluorine content, characterised by a high basic transmission in the UV wavelength range, is obtained. To this end, the substrate body has at least one reservoir layer of quartz glass at least in the region of the outer envelope thereof, having a minimum hydroxyl group content of 200 wt. ppm and/or a minimum hydrogen content of 1×1017 molecules/cm3, and the substrate body is either fully or partially removed following the deposition of the quartz glass layer doped with fluorine.
Abstract translation:本发明的目的是改进用于生产掺杂有氟的石英玻璃的通常已知的方法,其中通过等离子体沉积工艺在氟存在下形成SiO 2颗粒,其沉积在圆柱形石英玻璃的外包层上 衬底体围绕其纵向轴线旋转,并且玻璃化以形成氟含量为至少1.5重量%的石英玻璃层。 以这样的方式获得具有高氟含量的石英玻璃半成品,其特征在于在UV波长范围内具有高的基本透射率。 为此,衬底主体至少在其外壳的区域中具有至少一个石英玻璃储存层,其最小羟基含量为200重量%。 ppm和/或1×1017分子/ cm 3的最小氢含量,并且在掺杂了氟的石英玻璃层沉积之后,基板主体被完全或部分地去除。
Abstract:
A titania-doped quartz glass which experiences a reduction in OH group concentration of less than or equal to 100 ppm upon heat treatment at 900° C. for 100 hours is suitable as the EUV lithography member.