Abstract:
Provided is a spectrophotometer having a sample container 30, a light-source unit 10 for casting measurement light into the sample container 30, a photodetector 40 for detecting light obtained from the sample container 30 illuminated with the measurement light, a light separator 20 placed between the light-source unit 10 and the sample container 30, an A/D converter 50 for converting detection signals from the photodetector 40 into digital signals, and an A/D conversion time controller 65 for controlling an A/D conversion time in the A/D converter 50. The A/D converter 50 receives, for each A/D conversion time, detection signals sequentially produced by the photodetector 40, and sequentially outputs values corresponding to the amounts of signals received. The A/D conversion time controller 65 controls the A/D conversion time at five times (preferably, ten times) the cycle of commercial power supplies or longer during wavelength-correctness validation of the light separator 20.
Abstract:
The subject matter described herein includes a curved VPH grating with tilted fringes and spectrographs, both retroreflective and transmissive, that use such gratings. A VPH grating according to the subject matter described herein includes a first curved surface for receiving light to be diffracted. The grating includes an interior region having tilted fringes to diffract light that passes through the first surface. The grating further includes a second curved surface bounding the interior region on a side opposite the first surface and for passing light diffracted by the fringes.
Abstract:
Systems and methods are disclosed for the detection and identification of objects, wherein an illumination device emits polychromatic light in the infrared range, creating a light curtain, or an essentially two-dimensional area of light in the X and Z axis. The light from the light curtain and light reflected or transmitted by an object in the light curtain is imaged, via aperture-imaging optics, onto an aperture that is in the optical path and behind the aperture-imaging optics. The aperture is an elongated opening extending along the Z axis. A wavelength-dispersive device, such as a grating, diffracts light admitted by the aperture wavelength-dispersively in a diffraction direction along the Y axis. An image sensor detects the diffraction image and generates image signals which are analyzed to identify the materials comprising the object. An output signal may be generated in response to the material identified.
Abstract:
A broadband light source includes one or more laser diodes that are capable of generating a pump signal having a wavelength shorter than 2.5 microns, a pulse width of at least 100 picoseconds and a pump optical spectral width. The light source also includes one or more optical amplifiers that are coupled to the pump signal and are capable of amplifying the pump signal to a peak power of at least 500 W. The light source further includes a first fiber that is coupled to the one or more optical amplifiers. The first fiber including an anomalous group-velocity dispersion regime and a modulational instability mechanism that operates to modulate the pump signal. The light source also includes a nonlinear element that is coupled to the first fiber that is capable of broadening the pump optical spectral width to at least 100 nm through a nonlinear effect in the nonlinear element.
Abstract:
The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. In some embodiments an effective CDSL is constructed with only one laser. At least one embodiment includes a coherent scanning laser system (CSL) for generating pulse pairs with a time varying time delay. A CDSL, effective CDSL, or CSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.
Abstract:
A container for holding a sample and a system and method for a handheld spectrometer using the container is disclosed. In one embodiment, the container includes a vial with an optical window at the base of the vial. A sample may be placed in the vial. A hollow plunger may be slidably inserted into the vial which seals the gap between the plunger and the walls of the vial. The plunger includes a filter element. When the plunger is inserted into the vial, the sample is forced against the optical window and the filter element vents liquid and/or gas that is in the vial into the hollow plunger. A portable or handheld system for detecting, for example, biothreat agents makes use of the container in order to determine a spectrum of the sample. The optical window of the container is preferably substantially transparent to photons illuminating the sample and to photons produced due to the interaction of the illuminating photons and the sample.
Abstract:
An optical system for a multidetector array spectrophotometer which includes multiple light sources for emitting light of selected wavelength ranges and means for selectively transmitting the selected wavelength ranges of light to respective slits of a multi-slit spectrogrpah for multiple wavelength range detection. The spectrograph has two or more slits which direct the selected wavelength ranges of the light spectra to fall upon a dispersive and focusing system which collects light from each slit, disperses the light by wavelength and refocuses the light at the positions of a single set of detectors.
Abstract:
Apparatuses and methods for microscopic analysis of a sample using spatial light manipulation to increase signal to noise ratio are described herein.
Abstract:
The invention comprises a method and apparatus for sampling a common tissue volume and/or a common skin layer skin of a person as a part of noninvasively determining an analyte property with an analyzer including: a set of detectors at least partially embedded in a probe housing, the probe housing comprising a sample side surface, the detectors including a first and second range of detection zones of differing radial distances from a first illumination zone and second illumination zone, respectively coupled to separate sources, with surface paths between the sources and detectors overlapping a common skin area during use.
Abstract:
A Raman infrared compound microscope device includes: a first light source that generates laser light; a second light source that generates infrared light; a third light source that generates visible light; and a first optical system. The first optical system orients the visible light having reached the first optical system in different directions between when performing a Raman analysis using Raman light generated from a sample by irradiation of the laser light and when performing a first infrared analysis using the infrared light having passed through the sample.