Abstract:
A compact electron microscope is robust, simple to operate, and preferably requires no special utilities. Imaging can begin shortly after a sample is inserted. A preferred simplified design includes permanent magnets for focusing, lack a vacuum controller and vacuum gauge, and uses a backscattered electron detector and no secondary electron detector.
Abstract:
We disclose a gripper and associated apparatus and methods for delivering nano-manipulator probe tips inside a vacuum chamber. The gripper includes a tube; a compression cylinder inside of and coaxial with the tube; and at least one elastic ring adjacent to the compression cylinder. There is a vacuum seal coaxial with the compression cylinder for receiving and sealing against a probe tip. An actuator is connected to the compression cylinder for compressing the elastic ring and causing it to grip the probe tip. Thus the probe tip can be gripped, transferred to a different location in the vacuum chamber, and released there.Samples attached to the probe tips will be transferred to a TEM sample holder, shown in several embodiments, that includes a bar having opposed ends; an arm attached to each opposed end of the bar; one or more slots for receiving a probe tip; and, each slot having an inner part and an outer part, where the inner part is smaller than the outer part. The TEM sample holders just described are inserted into a carrier cassette. A cassette for transferring one or more TEM sample holders comprises a platform; at least one bar extending upwardly from the platform; the bar having a groove for receiving and holding a TEM sample holder. A rotatable magazine holds one or more probe tips and selectively releases the tips. The magazine includes a cartridge having a plurality of longitudinal openings for receiving probe tips and dispensing probe tips.
Abstract:
A method of visualizing a sample in a wet environment including introducing a sample into a specimen enclosure in a wet environment and scanning the sample in the specimen enclosure in a scanning electron microscope, thereby visualizing the sample.
Abstract:
A method of visualizing a sample in a wet environment including introducing a sample into a specimen enclosure in a wet environment and scanning the sample in the specimen enclosure in a scanning electron microscope, thereby visualizing the sample.
Abstract:
A SEM sample container having a sample enclosure (100, 102) including an electron beam permeable, fluid permeable membrane (132), and a peripheral enclosure sealed to the membrane, and a sample enclosure closure including a quick-connect attachment (152) for sealing engagement with the sample enclosure.
Abstract:
Multi-pixel electron microbeam irradiator systems and methods are provided with particular applicability for selectively irradiating predetermined cells or cell locations. A multi-pixel electron microbeam irradiator system can include a plurality of individually addressable electron field emitters sealed in a vacuum. The multi-pixel electron microbeam irradiator system can include an anode comprising one or more electron permeable portions corresponding to the plurality of electron field emitters. Further, the multi-pixel electron microbeam irradiator system can include a controller operable to individually control electron extraction from each of the electron field emitters for selectively irradiating predetermined locations such as cells or cell locations.
Abstract:
The seal assemblies of this invention comprise a closure assembly having first and second grooves, with a rubber seal mounted in said first groove and a removably mounted, replaceable barrier strand in said second groove, said barrier located between the rubber seal and a plasma source, whereby said barrier shields the rubber seal from erosive effects of the plasma.
Abstract:
Semiconductor processing apparatus is disclosed which provides for movement of a scanning arm 60 of a substrate or wafer holder 180, in at least two generally orthogonal directions (so-called X-Y scanning). Scanning in a first direction is longitudinally through an aperture 55 in a vacuum chamber wall. The arm 60 is reciprocated by one or more linear motors 90A, 90B. The arm 60 is supported relative to a slide 100 using gimballed air bearings so as to provide cantilever support for the arm relative to the slide 100. A compliant feedthrough 130 into the vacuum chamber for the arm 60 then acts as a vacuum seal and guide but does not itself need to provide bearing support. A Faraday 450 is attached to the arm 60 adjacent the substrate holder 180 to allow beam profiling to be carried out both prior to and during implant. The Faraday 450 can instead or additionally be mounted adjacent the rear of the substrate holder or at 90° to it to allow beam profiling to be carried out prior to implant, with the substrate support reversed or horizontal and out of the beam line.
Abstract:
The present disclosure relates to a vacuum processing apparatus. The vacuum processing apparatus includes a processing container capable of maintaining an inside thereof in a vacuum atmosphere, a stage provided in the processing container and on which a substrate is placed, a support member passing through an opening formed at a bottom of the processing container to support the stage from below, a holder part located outside the processing container, a flange part arranged around the opening on the outside of the processing container, and a sealing part configured to be expandable and contractible and provided inside the spherical bearing along the circumferential direction of the opening so as to airtightly seal at least a space between the flange part and the holder part.
Abstract:
Disclosed herein is a module for supporting a device configured to manipulate charged particle paths in a charged particle apparatus, the module comprising: a support arrangement configured to support the device, wherein the device is configured to manipulate a charged particle path within the charged particle apparatus; and a support positioning system configured to move the support arrangement within the module; wherein the module is arranged to be field replaceable in the charged particle apparatus.