Abstract:
In some embodiments, a system for collecting information from a sample includes a sample stage and one or more signal detectors. The sample stage includes a heating element, and the heating element is capable of heating at least a portion of the sample stage to at least 100 Celsius. The one or more signal detectors has a detection material with a silicon nitride window positioned between the detection material and the sample stage.
Abstract:
A method and apparatus for analysis of a specimen in a microscope are provided. A first survey is performed that collects analytical data from a region of interest on the specimen surface using a first set of conditions. A second survey is performed that collects additional analytical data from selected parts of the region of interest on the specimen surface using a second set of conditions, different from the first set of conditions. The analytical data from the first survey is used to select the parts used for data collection in the second survey and to decide the order in which they are used.
Abstract:
A method of investigating a specimen using X-ray tomography, comprising (a) mounting the specimen to a specimen holder, (b) irradiating the specimen with a beam of X-rays along a first line of sight through the specimen, and (c) detecting a flux of X-rays transmitted through the specimen and forming a first image. Then (d) repeating the steps (b) and (c) for a series of different lines of sight through the specimen, thereby producing a corresponding series of images. The method further comprises (e) performing a mathematical reconstruction on said series of images, so as produce a tomogram of at least part of the specimen, wherein the specimen is disposed within a substantially cylindrical metallic shell with an associated cylindrical axis, the beam of X-rays is produced by directing a beam of charged particles onto a zone of said metallic shell, so as to produce a confined X-ray source at said zone, and the series of different lines of sight is achieved by rotating said shell about said cylindrical axis, thereby causing relative motion of said zone relative to the specimen.
Abstract:
An interface, a scanning electron microscope and a method for observing an object that is positioned in a non-vacuum environment. The method includes: passing at least one electron beam that is generated in a vacuum environment through at least one aperture out of an aperture array and through at least one ultra thin membrane that seals the at least one aperture; wherein the at least one electron beam is directed towards the object; wherein the at least one ultra thin membrane withstands a pressure difference between the vacuum environment and the non-vacuum environment; and detecting particles generated in response to an interaction between the at least one electron beam and the object.
Abstract:
A data analysis system is disclosed for generating analysis data depending on microscopic data of an object generated by a charged particle microscope. The microscopic data includes an image showing a structure. A graphical representation of the structure is displayed on the display by the graphical user interface. Separation data is generated representing at least one path of a separation cut, which separates pixels of the structure from each other. The separation cut is visually marked by the graphical user interface, depending on the separation data, by differently marking different area portions of the representation, which represent different pixels of the structure which are separated from each other by the separation cut. Separate analysis data are generated for each of at least two portions of the object, depending on the microscopic data and depending on the separation data.
Abstract:
A focused ion beam apparatus including: a focused ion beam irradiation mechanism forming first and second cross-sections; a first image generation unit generating a first image, including a reflected electron image or a secondary electron image, of the first and second cross-sections; a second image generation unit generating a second image, including an EDS image or a secondary ion image, of the first and second cross-sections; and a control section causing the second image generation unit to generate the second image of the second cross-section, in a case where the first and second images of the first cross-section are acquired, the first image of the second cross-section is acquired, and the first image of the second cross-section includes a region different from a region representing a specific composition in the first image of the first cross-section.
Abstract:
A cross-section processing and observation method performed by a cross-section processing and observation apparatus, the method comprising: a cross-section processing step of forming a cross-section by irradiating a sample with an ion beam; a cross-section observation step of obtaining an observation image of the cross-section by irradiating the cross-section with an electron beam; and repeating the cross-section processing step and the cross-section observation step so as to obtain observation images of a plurality of cross-sections, wherein, in a case where Energy Dispersive X-ray Spectrometry (EDS) measurement of the cross-section is performed and an X-ray of a specified material is detected, an irradiation condition of the ion beam is changed so as to obtain observation images of a plurality of cross-sections of the specified material, and the cross-section processing and observation of the specified material is performed.
Abstract:
The present invention discloses a method for determining the mineral content represented by the entire SEM-EDS dataset, including initially unknown data points. SEM-EDS data points are taken and compared to a set of known data points. Any data point that is not sufficiently similar to the known data point is classified as unknown and clustered with like unknown data points. After all data points are analyzed, any clusters of unknown data points with a sufficient number of data points are further analyzed to determine their characteristics. All clusters of unknown data points with an insufficient number of data points to allow further analysis are considered outliers and discarded.
Abstract:
Some embodiments of the invention include a method for preparing a carbon-containing membrane. The method includes preparing a carbon-containing solution and then washing and filtering the carbon-containing solution. The method further provides adding a volume of the washed and filtered carbon-containing solution to a receptacle that includes an aqueous solution. After a predetermined amount of time, the carbon-containing solution will equilibrate and form sheets of carbon-containing materials that float on a surface of the aqueous solution. The method further includes defining an aperture through at least a portion of a substrate and then inserting the substrate in the receptacle so that at least a portion of the carbon-containing sheets adhere to the substrate. In addition, the method further includes thermally treating the membrane to improve its molecular impermeability.
Abstract:
System and method for charged particle beam. According an embodiment, the present invention provides a charged particle beam apparatus. The apparatus includes a charged particle source for generating a primary charged particle beam. The apparatus also includes at least one condenser lens for pre-focusing the primary charge particle beam. Furthermore, the apparatus includes a compound objective lens for forming the magnetic field and the electrostatic field to focus the primary charged particle beam onto a specimen in the charged particle beam path. The specimen includes a specimen surface. The compound objective lens includes a conical magnetic lens, an immersion magnetic lens, and an electrostatic lens, the conical magnetic lens including an upper pole piece, a shared pole piece being electrically insulated from the upper pole piece, and an excitation coil.