Abstract:
A high-voltage insulation device (300) for use in a charged-particle optical apparatus comprises a plurality of rigid pillars (320) made of electrically insulating material. These pillars (320) are arranged around a central passage (310) which traverses the insulating device along its longitudinal axis (L), and the two ends of each pillar are configured to be respectively fixed to two separate electrostatic housings (221, 231) of the charged-particle optical apparatus by means of two respective end plates (311, 312), with the pillars (320) being oriented at an angle so as to be inclined with regard to said longitudinal axis (L). Advantageously, the pillars are mechanically adjustable with regard to their effective length, and each pillar (320) is arranged outside the central passage with its two ends at either of the first and second end plates (311, 312), preferably in a zig-zag arrangement.
Abstract:
The invention relates to a device (20) for producing an electron beam (4), which comprises a hot cathode (1), a cathode electrode (2), an anode electrode (3) having an opening (6) through which an electron beam (4) produced by the device can pass, wherein during the operation of the device (20) a voltage for accelerating the electrons exiting from the hot cathode (1) is applied between the cathode electrode (2) and the anode electrode (3), and further comprising deflection means that can deflect the electron beam (4) that has passed through the opening of the anode electrode (3), wherein the deflection means comprise at least one deflection electrode (8, 12), which can reflect the electron beam (4) and/or which comprises a deflection surface (9) that is inclined towards the propagation direction of the electron beam (4).
Abstract:
In a method for fracturing or mask data preparation or mask process correction for charged particle beam lithography, a plurality of shots are determined that will form a pattern on a surface, where shots are determined so as to reduce sensitivity of the resulting pattern to changes in beam blur (βf). In some embodiments, the sensitivity to changes in βf is reduced by varying the charged particle surface dosage for a portion of the pattern. Methods for forming patterns on a surface, and for manufacturing an integrated circuit are also disclosed, in which pattern sensitivity to changes in βf is reduced.
Abstract:
A scanning electron microscope (SEM) is configured so that SEM images are acquired while scanning a pyramid pattern on a sample plane from four directions. Landing angle of the electron beam is calculated from these SEM images, which are then averaged, whereby inclination angle of the electron beam that is less influenced from scan distortion can be found.
Abstract:
In the case of a conventional gas field ionization ion source, it was not possible to carry out an analysis with a high S/N ratio and a high-speed machining process because the current amount of an ion beam is small. In view of these problems, the present invention has been devised, and its object is to obtain a large ion beam current, while suppressing a probability of damaging an emitter electrode. The present invention is characterized by a process in which an ion beam is emitted at least in two operation states including a first operation state in which, when a first extraction voltage is applied, with the gas pressure being set to a first gas pressure, ions are emitted from a first ion emission region at the apex of the emitter electrode, and a second operation state in which, when a second extraction voltage that is higher than the first extraction voltage is applied, with the gas pressure being set to a second gas pressure that is higher than the first gas pressure, ions are emitted from a second ion emission region that is larger than the first ion emission region.
Abstract:
It is an object of the present invention to provide a scanning electron microscope for discriminating an angle of an electron ejected from a sample without providing an opening for restricting the angle at outside of an axis. In order to achieve the object described above, there is proposed a scanning electron microscope which includes a deflector to deflect an irradiating position of an electron beam, and a control unit to control the deflector, and further includes a detector to detecting an electron provided by irradiating a sample with the electron beam, an opening configuring member arranged between the detector and the deflector and having an opening for passing the electron beam, and a secondary signal deflector to deflect an electron ejected from the sample, in which the secondary signal deflector is controlled to deflect the electron ejected from the sample toward an opening of passing the electron beam in accordance with a deflection control of the deflector.
Abstract:
A system for adaptive electron beam scanning may include an inspection sub-system configured to scan an electron beam across the surface of a sample. The inspection sub-system may include an electron beam source, a sample stage, a set of electron-optic elements, a detector assembly and a controller communicatively coupled to one or more portions of the inspection sub-system. The controller may assess one or more characteristics of one or more portions of an area of the sample for inspection and, responsive to the assessed one or more characteristics, adjust one or more scan parameters of the inspection sub-system.
Abstract:
An apparatus, method and products thereof provide an accelerated neutral beam derived from an accelerated gas cluster ion beam for processing materials.
Abstract:
A secondary charged particle detection system for a charged particle beam device is described. The detection system includes a beam splitter for separating a primary beam and a secondary beam formed upon impact on a specimen; a beam bender for deflecting the secondary beam; a focusing lens for focusing the secondary beam; a detection element for detecting the secondary beam particles, and three deflection elements, wherein at least a first deflector is provided between the beam bender and the focusing lens, at least a second deflector is provided between the focusing lens and the detection element, at least a third deflector is provided between the beam splitter and the detection element.
Abstract:
Disclosed are methods and associated apparatus for depositing layers of material on a substrate (e.g., a semiconductor substrate) using ionized physical vapor deposition (iPVD). Also disclosed are methods and associated apparatus for plasma etching (e.g., resputtering) layers of material on a semiconductor substrate.