Abstract:
A method of analysis using mass spectrometry and/or ion mobility spectrometry is disclosed comprising: (a) using a first device to generate smoke, aerosol or vapour from a target in vitro or ex vivo cell population; (b) mass analysing and/or ion mobility analysing said smoke, aerosol or vapour, or ions derived therefrom, in order to obtain spectrometric data; and (c) analysing said spectrometric data in order to identify and/or characterise said target cell population or one or more cells and/or compounds present in said target cell population.
Abstract:
In a sampling system for mass spectrometry, a method and apparatus are set forth for high flow-rate flushing and sample delivery via a sampling probe (10). The sampling system includes a sampling probe (10) having a first fluid conduit (40) with an inlet, a second fluid conduit (42) with an outlet, and a sampling port fluidly connecting the first fluid conduit (40) and second fluid conduit (42). A fluid source (50) is attached to the inlet and a vacuum source (60) is attached to the outlet for causing fluid to flow through the first fluid conduit (40) past the sampling port and exit through the second fluid conduit (42). A cap (90) is provided for selectively closing and opening the sampling port. When the cap is removed, thus when the sampling port is open, sample may be introduced into, and captured by fluid flowing through the sampling port. When the cap is in place, thus when the sampling port is closed, a flushing fluid is supplied for flushing the sampling probe (10).
Abstract:
A method of analysis using mass spectrometry and/or ion mobility spectrometry is disclosed comprising: (a) using a first device to generate smoke, aerosol or vapour from a target in vitro or ex vivo cell population; (b) mass analysing and/or ion mobility analysing said smoke, aerosol or vapour, or ions derived therefrom, in order to obtain spectrometric data; and (c) analysing said spectrometric data in order to identify and/or characterise said target cell population or one or more cells and/or compounds present in said target cell population.
Abstract:
A method of analysis using mass spectrometry and/or ion mobility spectrometry is disclosed. The method comprises: using a first device to generate smoke, aerosol or vapour from a target comprising or consisting of a microbial population; mass analysing and/or ion mobility analysing said smoke, aerosol or vapour, or ions derived therefrom, in order to obtain spectrometric data; and analysing said spectrometric data in order to analyse said microbial population.
Abstract:
The invention relates to an ionization chamber for connection to a mass spectrometer. The ionization chamber has a temperature-control block with a gas inlet and a gas channel which starts at the gas inlet and leads into a gas outlet. A temperature-control device is positioned along the gas channel and ensures that a gas flowing in the gas channel is brought to a specific temperature, i.e. it is heated or cooled, before it enters the ionization chamber. The temperature-control block has a formed part into which a structure of the gas channel is incorporated and which is fabricated by means of a sol-gel process, for example out of a glass or ceramic material.
Abstract:
Systems and methods for delivering a sample to a mass spectrometer are provided. In one aspect, the systems and methods can provide efficient cooling of an ion source probe to prevent overheating and the resulting degradation in ion sampling. In some aspects, such cooling can result in improved consistency and/or efficiency of ion formation. Moreover, ion source cooling in accordance with various aspects of the present teachings can allow for the use of higher temperatures in the ionization chamber (thereby improving desolvation) and/or can enable the use of lower flow rate sample sources than with conventional techniques.
Abstract:
The present invention relates to electrospray ionization (ESI) at atmospheric pressure coupled with a mass spectrometer, in particular to a special kind of micro-electrospray with liquid flows in the range of 0.1 to 100 microliters per minute. The invention describes the use of an off-axis pre-entrance channel in an ESI ion source to prevent particulate matter with higher inertia than the (charged) gas molecules, such as droplets, from entering the mass spectrometer. The elimination of the particulate matter improves the quantitative precision of an LC/MS bioassay, minimizes the contamination of the mass spectrometer and improves the robustness for high throughput assays.
Abstract:
A sample solution containing a sample component is sprayed onto an atmosphere at atmospheric approximately pressure while being applied with electric charge from the tip of a nozzle (1). A sample molecule is released as an ion in a process where charged minute liquid droplets collide with an atmospheric gas and are broken apart, and a solvent is vaporized from the respective liquid droplets. A reflectron (7) in the shape of a half-cut spheroid is arranged in such a manner that a second focal point (F2) is positioned in front of an ion-introducing portion (4) in the spray flow. A discharge electrode (8) is disposed in a position at a first focal point (F1) of the reflectron (7). When pulsed high voltage is applied to the discharge electrode (8), an electric discharge occurs, causing shock waves to be generated. The shock waves reflected on the reflectron (7) are converged on the second focal point (F2). Due to the converged shock waves, the vicinity of the second focal point (F2) rises to a high temperature, and a large pressure is also applied thereto. Therefore, vaporization of a solvent from the respective liquid droplets is further accelerated, allowing an ion to be easily generated. In addition, direct ionization can be expected. This makes it possible to improve ion generation efficiency.
Abstract:
A system of mass spectrometry is disclosed having an ion source for generating ions at substantially atmospheric pressure. The system has a sampling member with an orifice disposed therein. The sampling member forms a vacuum chamber with a mass spectrometer. The system also has a curtain plate between the ion source and the sampling member. The curtain plate has an aperture therein, having a cross-section and being spaced from the sampling member to define a flow passage between the curtain plate and the sampling member, and to define an annular gap between the orifice and the aperture. The area of the annular gap is less than the cross-sectional area of the aperture. The system also has a power supply for applying a voltage to the curtain plate, and a curtain gas flow mechanism for directing a curtain gas into the flow passage and the annular gap.
Abstract:
A system and method for mass spectrometry including a curtain gas chamber defined by a curtain plate having an aperture for receiving ions from an ion source and an orifice plate having an inlet into a mass spectrometer. At least one barrier separates the curtain chamber into a first curtain gas chamber region and a second curtain gas chamber region. At least one gas source provides a gas inflow into the second curtain gas chamber region and a gas outflow into the first curtain gas chamber region, a portion of the gas outflow directed out of the aperture. A heating element heats the gas inflow, a portion of the heated gas inflow directed into the inlet of the mass spectrometer wherein the portion of the heated gas inflow can be at a substantially higher temperature than the portion of the gas outflow.