Abstract:
A sheet-like thermally conductive resin composition containing 70 to 95 wt. % inorganic filler and 5 to 30 wt. % thermosetting resin composition, a lead frame as a wiring pattern, and an electrically conductive heat sink with a metal pole placed therein are superposed, heated and compressed, and thus are combined to form one body. Consequently, a thermally conductive circuit board with a flat surface is obtained in which a grounding pattern is grounded to the heat sink inside the insulating layer. Thus, the grounding pattern and the heat sink can be connected electrically with each other in an arbitrary position inside the insulating layer of the thermally conductive circuit board. Accordingly, there are provided a thermally conductive circuit board with high heat dissipation, high conductivity and high ground-connection reliability, a method of manufacturing the same, and a power module allowing its size to be reduced and its density to be increased.
Abstract:
A sheet-like thermally conductive resin composition containing 70 to 95 wt. % inorganic filler and 5 to 30 wt. % thermosetting resin composition, a lead frame as a wiring pattern, and an electrically conductive heat sink with a metal pole placed therein are superposed, heated and compressed, and thus are combined to form one body. Consequently, a thermally conductive circuit board with a flat surface is obtained in which a grounding pattern is grounded to the heat sink inside the insulating layer. Thus, the grounding pattern and the heat sink can be connected electrically with each other in an arbitrary position inside the insulating layer of the thermally conductive circuit board. Accordingly, there are provided a thermally conductive circuit board with high heat dissipation, high conductivity and high ground-connection reliability, a method of manufacturing the same, and a power module allowing its size to be reduced and its density to be increased.
Abstract:
A wiring board comprises a substrate (10) in which an opening (14) is formed, a wiring pattern (20) formed on one surface of the substrate (10) and having a bent portion (22) intruding into the opening (14) and protruding from the other surface of the substrate (10), and a resin 26 with which an inside of the bent portion (22) is filled and allowing deformation to a certain degree while preventing large deformation, and the bent portion (22) forms the external terminals of the semiconductor device.
Abstract:
An electrically conductive article such as a sheet having holes therein is coated with a dielectric polymer using a multi-stage electrophoretic deposition process. A coating of uncured polymer is deposited electrophoretically and then cured. After the first polymer is cured, the part is subject to a further electrophoretic deposition process and further curing. Use of a second electrophoretic deposition step allows effective coating of parts having small holes without plugging the holes. The coated parts may be used as microelectronic connection components such as chip carriers used in packaging semiconductor chips.
Abstract:
Solder balls, such as, low melt C4 solder balls undergo volume expansion during reflow. Where the solder balls are encapsulated, expansion pressure can cause damage to device integrity. A volume expansion region in the semiconductor chip substrate beneath each of the solder balls accommodates volume expansion. Air-cushioned diaphgrams, deformable materials and non-wettable surfaces may be used to permit return of the solder during cooling to its original site. A porous medium with voids sufficient to accommodate expansion may also be used.
Abstract:
A head interconnect circuit for connecting transducer elements of a data head to drive circuitry including an alignment finger on a lead tip for aligning leads relative to connectors or solder pads for electrically connecting heads to drive circuitry. A method for connecting a head interconnect circuit to a printed circuit supported on an head actuator including aligning an alignment finger on the lead tip with a printed surface of a drive circuit for soldering leads on the lead tip to solder pads or connectors on the drive circuit.
Abstract:
A wiring board structure has an insulating base having at least one projection located thereon, wherein the insulating base and the at least one projection are integrally formed from a same piece of insulating material. The wiring board structure also has at least one lead located on the insulating base, wherein a part of the at least one lead covers the at least one projection to form at least one conductive bump.
Abstract:
A Printed Circuit Board (PCB) has a cut-out that permits a monolithic copper or aluminum heatsink to be mounted flush with the surface of the PCB. Electrical devices can be mounted to the monolithic heat sink. The heat sink is bent to extend out of the plane of the PCB. The heatsink can have parts mounted to connect with either face of the PCB, and can extend from either side of the PCB. The heatsink is stepped to present one surface flush with the PCB and another surface that lies along the face of the PCB.
Abstract:
A head interconnect circuit for connecting transducer elements of a data head to drive circuitry including an alignment finger on a lead tip for aligning leads relative to connectors or solder pads for electrically connecting heads to drive circuitry. A method for connecting a head interconnect circuit to a printed circuit supported on an head actuator including aligning an alignment finger on the lead tip with a printed surface of a drive circuit for soldering leads on the lead tip to solder pads or connectors on the drive circuit.
Abstract:
An interposer for interconnection between microelectronic circuit panels has contacts at its surfaces. Each contact extends from a central conductor, and has a peripheral portion adapted to contract radially inwardly toward the central conductor response to a force applied by a contact pad defining a central hole on the engaged circuit panel. Thus, when the circuit panels are compressed with the interposers, the contacts contract radially inwardly and wipe across the pads. The wiping action facilitates bonding of the contacts to the pads, as by friction welding, or by a conductive bonding material carried on the contacts themselves.