Abstract:
A ceramic/copper circuit board of an embodiment includes a ceramic substrate and first and second copper plates bonded to surfaces of the ceramic substrate via bonding layers containing active metal elements. In cross sections of end portions of the first and second copper plates, a ratio (C/D) of an area C in relation to an area D is from 0.2 to 0.6. The area C is a cross section area of a portion protruded toward an outer side direction of the copper plate from a line AB, and the area D is a cross section area of a portion corresponding to a right-angled triangle whose hypotenuse is the line AB. R-shape sections are provided at edges of upper surfaces of the first and second copper plates, and lengths F of the R-shape sections are 100 μm or less.
Abstract:
There are provided a printed circuit board and a method of manufacturing the same. The printed circuit board include a glass plate, an insulating member penetrating through the glass plate, insulating layers disposed on a first surface and a second surface of the glass plate, and a via through the insulating member.
Abstract:
A semiconductor device includes: a printed wiring board; plural semiconductor array elements mounted on the printed wiring board in a row with an adhesive, each of the semiconductor array elements including plural semiconductor elements arranged in a row, the semiconductor array elements including a first semiconductor array element and a second semiconductor array element adjacent to the first semiconductor array element, the first semiconductor array element having a first facing surface, the second semiconductor array element having a second facing surface facing the first facing surface; a first contact prevention member that is made of organic material and disposed to project from the first facing surface; and a second contact prevention member that is made of organic material and disposed to project from the second facing surface. The first and second contact prevention members are disposed to abut each other or face each other with a gap therebetween.
Abstract:
A printed wiring board includes a core laminate body including insulating layers, conductor layers including first and second conductor layers, and via conductors having smaller end surfaces connected to the first conductor layer, a first build-up layer formed on the core body and including an interlayer, a conductor layer on the interlayer, and via conductors having smaller end surfaces connected to the first conductor layer, and a second build-up layer formed on the core body and including an interlayer and a conductor layer on the interlayer. The first conductor layer is embedded such that the first conductor layer has exposed surface on the surface of the core body, the second conductor layer is formed on the other surface of the core body, and the first conductor layer has wiring pattern having the smallest minimum width of wiring patterns of the conductor layers in the core body and build-up layers.
Abstract:
A wiring board with a built-in electronic component includes a substrate having a cavity, an electronic component accommodated in the cavity and having electrode terminals, an insulating layer formed on the substrate such that the insulating layer is covering the electronic component in the cavity, and via conductors formed through the insulating layer and including first via conductors and second via conductors such that the second via conductors are connected to the electrode terminals of the electronic component, respectively. The via conductors are formed in via formation holes penetrating through the insulating layer, respectively, and the via formation holes include first via formation holes and second via formation holes such that the second via formation holes are exposing the electrode terminals of the electronic component, respectively, and that a second via formation hole has a diameter which is smaller than a diameter of a first via formation hole.
Abstract:
A first resin layer (1) has: a covered region which is covered by a second resin layer (2) and an exposed region (1a); a contact part (1b) which is provided in the exposed region (1a); and a bend part (1c) which is provided between (a) a boundary between the covered region and the exposed region (1a) and (b) the contact part (1b).
Abstract:
There are provided a printed circuit board and a method of manufacturing the same. The printed circuit board according to an exemplary embodiment of the present disclosure includes a metal core; a through via penetrating through the metal core; and an insulating film formed between the metal core and the through via.
Abstract:
A printed circuit board, according to one embodiment, includes: a core having a slope pattern formed on a side surface thereof; a first insulating layer laminated on the core; a second insulating layer laminated on the first insulating layer to cover the side surface of the core; an inner circuit layer and an outer circuit layer respectively formed on the first insulating layer and the second insulating layer; and a solder resist layer laminated on the second insulating layer.
Abstract:
An electronic device embedded substrate and a method of manufacturing the same are disclosed. The electronic device embedded substrate in accordance with an aspect of the present invention includes: an electronic device; and a core substrate having a cavity, in which the electronic device is embedded and of which a width of at least a portion is smaller than widths of other portions thereof.
Abstract:
An electrical connection interface is provided. The electrical connection interface includes a first ground plane layer, a second ground plane layer, a first substrate and a second substrate. The second ground plane layer is positioned to overlap the first ground plane layer. The first substrate includes a first substrate conductive lead with a first interface region connected to and electrically insulated from the first ground plane layer. The second substrate includes a second substrate conductive lead with a second interface region connected to the first substrate conductive lead and the second ground plane layer. The second substrate conductive lead is electrically insulated from the second ground plane layer.