Abstract:
In electronic devices with signal traces positioned between a ground layer and a voltage reference layer, systems and methods are provided for connecting a hot pluggable device to the electronic device in a manner that diminishes signal degradation due to parasitic effects. The first device has a second reference layer near the connector that connects to a second device voltage reference layer maintained at a given voltage level across the connector. In the first device near the connector the signal trace is positioned in between a ground layer of the first device and the second reference layer which is maintained at a given voltage by a voltage regulator of the second device. The signal return current travels past the second reference layer to a first reference layer of the first device which is maintained by the first device's voltage regulator through AC decoupling capacitors minimizing the current return path discontinuity.
Abstract:
An information handling system, e.g., a mainframe computer, which includes as part thereof a housing having therein an electrical assembly including a circuitized substrate which in turn includes a plurality of contiguous open segments which define facing edge portions within an electrically conductive layer to isolate separate portions of the conductive layer such that the layer can be used for different functions, e.g., as both power and ground elements, within the system. At least one electrical component is positioned on and electrically coupled to the circuitized substrate of the system's electrical assembly.
Abstract:
A printed circuit board (PCB) includes a signal layer and a power layer. The signal layer includes a crystal oscillator pad, a clock generator pad, and two capacitor pads. The crystal oscillator pad is connected to the clock generator pad and the capacitor pads via two signal lines. The power layer is divided into two areas by a cut-off line, the two areas respectively having different voltages. The cut-off line is located at one side of the crystal oscillator pad and the clock generator pad.
Abstract:
In a memory module, a plurality of memories are mounted on a module base plate, impedance between Vref and Vss near each memory is coupled to Vss by a decoupling capacitor and a Vref plane to achieve low impedance configuration in a wide frequency range, Vref planes are individually provided for the respective memories, and the Vref planes are connected to each other by using a high impedance wire, or a high impedance chip part. Accordingly, a wiring technique for a module which allows effective reduction of self noise and propagation noise can be provided.
Abstract:
A printed wiring board, comprising a signal plane having a baseband block for processing a baseband signal and a high-frequency block for processing a high-frequency signal which is obtained by converting the baseband signal, and a ground plane opposing to the signal plane. The baseband block and the high-frequency block are connected through a transmission line for transmitting a signal of a specific frequency region. The ground plane is provided with a first ground portion and a second ground portion, the first ground portion being provided at an area opposing to the baseband block, the second ground portion being provided at an area opposing to the high-frequency block. The first ground portion and the second ground portion are coupled to each other through a coupling portion provided therebetween which has a low impedance with respect to the signal of the specific frequency region.
Abstract:
A novel method for manufacturing embedded a capacitive stack and a novel capacitive stack apparatus are provided having a capacitive core that serves as a structural substrate on which alternating thin conductive foils and nanopowder-loaded dielectric layers may be added and tested for reliability. This layering and testing allows early fault detection of the thin dielectric layers of the capacitive stack. The capacitive stack may be configured to supply multiple isolated capacitive elements that provide segregated, device-specific decoupling capacitance to one or more electrical components. The capacitive stack may serve as a core substrate on which a plurality of additional signaling layers of a multilayer circuit board may be coupled.
Abstract:
The present invention uses metallization termination techniques to reduce the electro-magnetic field scattering at the edges of metallized areas. The metallization termination techniques provide a gradual transition from high conductivity areas to high impedance areas. The mobile phone antenna illuminates the PCB allowing currents to flow on the PCB. When the currents reach edges of the PCB they flow through a region of increasingly high impedance without reflecting back or scattering.
Abstract:
A system may include a conductive plane defining a non-conductive antipad area and a second non-conductive area extending from the antipad area in at least a first direction, a dielectric plane coupled to the conductive plane, a conductive via passing through the dielectric plane and the antipad area, a conductive pad connected to an end of the conductive via, and a conductive trace coupled to the dielectric plane and connected to the conductive pad, the conductive trace extending from the conductive pad in the first direction.
Abstract:
An information handling system has a printed circuit board with a split power plane having a plurality of sections that may be used for distributing different voltages on a single conductive foil layer of the printed circuit board to components on the printed circuit board. Capacitive coupling of the split power plane sections may be enhanced with a high dielectric fill between the portions.
Abstract:
A computer program for balancing power plane pin currents in a printed wiring board (PWB) provides for reduction in pin counts required for power plane (including ground plane) connections and/or reduction in requirements for connector current handling per pin. One or more slots is introduced in the metal layer implementing the power plane that alter the current distribution in the power plane. The per-pin current profile for connector pins connected to the power plane is equalized by tuning the length of the slot(s). The slots may be dashed or made internal to the power plane metal layer to avoid weakening the metal layer for laminated multi-layer PWBs and may be shaped around a connector end when the power plane pin allocation is not uniform at the connector ends. The resulting equalization reduces either pin count required for carrying the power plane current or reduces connector pin current requirements.