Abstract:
A method of fabricating a zero signal degradation solder bridge electrical connection for connecting adjacent conducting pads of a printed circuit board, and a printed circuit board having at least one of these solder bridge electrical connections. In the method, a stencil, having an opening that corresponds to the adjacent conducting pads and at least a portion of the surface area of the printed circuit board between the adjacent conducting pads, is placed on the surface of printed circuit board. Solder paste is then applied to the stencil such that the solder paste flows through the stencil opening and onto the adjacent conducting pads and at least a portion of the surface area of the printed circuit board between the pads. The stencil is then removed and the printed circuit board is subjected to reflow soldering, thereby fabricating a printed circuit board having a solder bridge electrical connector between adjacent conducting pads.
Abstract:
A multi-layer electronic circuit board design 10 having selectively formed apertures or cavities 26 which have improved solder-wetting characteristics.
Abstract:
A heated and pressed printed wiring board is made by filling via holes formed in layers of insulating film of the wiring board with an interlayer conducting material. The insulating film is stacked with conductor patterns, and each conductor pattern closes a via hole. The interlayer conducting material forms a solid conducting material in the via holes after a heating a pressing procedure. The solid conducting material includes two types of conducting materials. The first type of conducting material includes a metal, and the second type of conductive material includes an alloy formed by the metal and conductor metal of the conductor patterns. The conductor patterns are electrically connected reliably without relying on mere mechanical contact.
Abstract:
The invention relates to a method for producing a contact substrate (10) as well as to a contact substrate with through-plating between a connector arrangement (21) arranged at the top of a dielectric carrier substrate (12) and the underside of the carrier substrate, wherein the connector arrangement extends along an aperture margin (22) of a substrate recess (15), and the underside (11) of the carrier substrate (12) is supported by a backstop (23), wherein a formed solder material part (24) is placed in the substrate recess (15), and in a subsequent method-related step said formed solder material part (24) is deformed within the substrate recess so as to form a formed contact part (50), such that radial displacement of the material of the formed solder material part in the substrate recess results in a non-positive connection between an intrados surface (28) of the substrate recess and the connector arrangement (21), and that the formed contact part provides through-plating between the connector arrangement (21) and the underside (11) of the carrier substrate.
Abstract:
A wiring board which can realize a small and thin passive component such as solid condenser, resistor, coil, transistor or so on is provided. A wiring board which forms an electronic component by mounting a passive element, comprising an insulating board provided with an opening having predetermined pattern, a wiring formed with predetermined pattern on said insulating board, and an external terminal filled to said opening, connected with said wiring by said filling, and exposed to a bottom of said insulating board where said wiring is formed.
Abstract:
A method 10 for making a multi-layer electronic circuit board 98 having at least one electrically conductive protuberance 15 which forms a “via” and which traverses through the various layers of the electric circuit board 98, and further having at least one interconnection portion 102 which supports a wide variety of components and interconnection assemblies.
Abstract:
An electrical assembly (200, FIG. 2) is formed from two, interconnected circuit boards (202, 204). Conductive spacers (240) and a conductive material (260) are placed between complementary bond pads (218, 232) on the circuit boards. The conductive spacers are formed from a material that maintains its mechanical integrity during the process of attaching the circuit boards. The conductive material is a solder or conductive adhesive used to mechanically attach the circuit boards. In addition, an insulating material (270) is inserted into an interface region (250) between the circuit boards. The insulating material provides additional mechanical connection between the circuit boards. In one embodiment, one circuit board (202) includes a glass panel that holds an array of organic light emitting diodes (OLEDs), and the other circuit board (204) is a ceramic circuit board. Together, the interconnected circuit board assembly (200) forms a portion of a flat panel display (1102, FIG. 11).
Abstract:
An antenna structure includes a surface-mounted antenna which has a base member. A radiating electrode and an antenna-side control electrode are disposed on the base member. A capacitance is generated between the antenna-side control electrode and an open end of the radiating electrode, and the antenna-side control electrode electrically floats. A board-side control electrode which is electrically connected with the antenna-side control electrode and which electrically floats is disposed on a mounting board. The board-side control electrode is connected with a ground conductor at high frequencies through a resonant frequency adjuster. The resonant frequency adjuster has a capacitance or an inductance. By changing the capacitance or the inductance, the resonant frequency of the radiating electrode can be changed without changing the surface-mounted antenna.
Abstract:
A method for forming connections within a multi-layer electronic circuit board 10. The method includes forming an aperture within the circuit board and selectively coating the interior surface of the aperture with a polar solder mask material that is effective to bond with solder that is selectively inserted into the aperture, thereby retaining the solder within the aperture and improving the electrical connection provided by the solder.
Abstract:
In the formation of through wirings in a silicon substrate and so forth, there was a need for the development of a technology that would allow metal to be reliably filled particularly in the vicinity of openings of through holes and other fine holes. This invention provides a metal filling method and member with filled metal sections in which, in the inflow and filling of a plating solution into through holes 11 of a substrate 10 by immersing said substrate 10 in heated and melted conductive metal, filled metal sections are formed by preliminarily forming a metal layer 15 on the inner surface of one of the ends of through holes 11 of this substrate 10 as well as on substrate top surface 13 around those openings, removing substrate 10 on which inflow and filling of the plating solution into through holes 11 has been completed from the plating solution, and then cooling to solidify the plating solution that has been filled into the through holes.