Abstract:
A mounting assembly for electro-mechanically connecting an electrically-powered device to a structure includes a housing, a first printed circuit board, an adapter, and a second printed circuit board. The housing has a shape defining a front opening and a first mating structure. The first printed circuit board is located within the housing and has a first plurality of electrical contacts facing the front opening. The adapter is attachable to the device and has a second mating structure that removably engages with the first mating structure of the housing. The second printed circuit board is coupled with the adapter and has a second plurality of electrical contacts exposed on its back surface to electrically connect to the first plurality of electrical contacts when the first mating structure of the housing engages with the second mating structure of the adapter.
Abstract:
A circuit board structure includes a first circuit board, a second circuit board and a plurality of first connection portions. The first circuit board has a first opening, and the second circuit board is disposed inside the first opening of the first circuit board. The first circuit board and the second circuit board are electrically independent from each other. The first connection portions are connected to the first circuit board and the second circuit board.
Abstract:
A first printed circuit board (PCB) assembly can include an embedded electrical connector configured to be mechanically coupled to a corresponding tab-shaped portion of a second PCB assembly, such as to permit insertion of the tab-shaped portion of the second PCB assembly into the embedded electrical connector when the second PCB assembly is aligned in a specified orientation. In an example, the second PCB assembly can include an approximately planar conductive antenna.
Abstract:
A printed circuit board arrangement and a method for mounting a product to a main printed circuit board (100) at a substantially perpendicular angle, the printed circuit board arrangement comprises a main printed circuit board (100) comprising an elongated slot (102), and a product (128) comprising a connector portion (130) configured to be inserted into the elongated slot (102). The connector portion (130) is such that the product (128) may be attached at a substantially perpendicular angle to the main printed circuit board (100). The elongated slot (102) comprises a protrusion (104), and the connector portion (130) comprises a spring portion (132) configured to engage with the protrusion (104) when the connector portion (130) is inserted into the elongated slot (102). This results in a force pressing the connector portion (130) of the product (128) to at least one side wall of the elongated slot (102).
Abstract:
A method of making an array of integral terminals on a circuit assembly. The method includes the steps of depositing at least a first liquid dielectric layer on the first surface of a first circuit member, imaged to include a plurality of first recesses corresponding to the array of integral terminals. The selected surfaces of the first recesses are processed to accept electro-less conductive plating deposition. Electro-lessly plating is applied to the selected surfaces of the first recesses to create a plurality of first conductive structures electrically coupled to, and extending generally perpendicular to, the first circuitry layer. Electro-plating is applied to the electro-less plating to substantially first recesses with a conductive material. The steps of depositing, processing, electro-less plating, and electro-plating are repeated to form the integral terminals of a desired shape. The dielectric layers are removed to expose the terminals.
Abstract:
In one implementation, an insertable power unit for plugging into a mother board includes a power module situated on a substrate, and a mounting contact on an extended side of the substrate away from the power module. The mounting contact is electrically coupled to the power module by electrical routing in the substrate. The mounting contact is configured to provide electrical connection between the power module and the mother board.
Abstract:
An electronic device includes a substrate having a connector formed on a main face, and a module having a terminal detachably connected to the connector of the substrate. The module includes an extended part which projects below the terminal in an installation direction. The substrate includes a bypass part which bypasses the extended part when the module is connected to the substrate. The bypass part is a cutout or a recess formed in the substrate. The extended part accommodates a plurality of components aligned in the installation direction. The extended part is extended from the lower end of the module by a difference between a first size, corresponding to multiple times the size of each component, and a second size ranging from the upper end of the module to the end of the terminal.
Abstract:
A substrate device for electronic circuits or devices includes a first substrate section including a first plurality of layers attached to each other having a first orientation (x2) and a second substrate section including a second plurality of layers attached to each other. The second plurality of layers have a second orientation (x3). The first orientation (x2) and the second orientation (x3) are angled (α) with respect to one another.
Abstract:
A method of making an array of integral terminals on a circuit assembly. The method includes the steps of depositing at least a first liquid dielectric layer on the first surface of a first circuit member, imaged to include a plurality of first recesses corresponding to the array of integral terminals. The selected surfaces of the first recesses are processed to accept electro-less conductive plating deposition. Electro-lessly plating is applied to the selected surfaces of the first recesses to create a plurality of first conductive structures electrically coupled to, and extending generally perpendicular to, the first circuitry layer. Electro-plating is applied to the electro-less plating to substantially first recesses with a conductive material. The steps of depositing, processing, electro-less plating, and electro-plating are repeated to form the integral terminals of a desired shape. The dielectric layers are removed to expose the terminals.
Abstract:
A circuit board assembly includes a flexible circuit board, a dielectric layer and a reinforcing plate. The flexible circuit board includes a surface. A copper plating layer is positioned on the surface. The copper plating layer includes a circuit portion and a grounding portion. The circuit portion is entirely covered by the dielectric layer. The grounding portion is exposed outside the dielectric layer. The dielectric layer includes a bonding portion. The reinforcing plate includes a connection surface. The connection surface defines a cavity spatially corresponding to the bonding portion. The connection surface also includes an extending portion which is bulgy with respect to a bottom surface of the cavity. The extending portion spatially corresponds to the grounding portion. The bonding portion is received in the cavity with the extending portion in contact with and electrically connecting to the grounding portion by means of a conductive adhesive.