Abstract:
A stretchable device for transmitting signal between end points, such as a sensor and electronic unit, includes a conductive element, which is coupled with a supporting structure by introducing the conductive element successively through the thickness of the supporting structure to the first and second side of the supporting structure, thereby providing a corrugated structure for the conductive element, which is configured to be straighten out at least partially during stretching the device in its longitudinal direction. The conductive element is coupled with the supporting structure between first and second outer layers thereby providing the stretchable device.
Abstract:
A flexible flat circuit includes a pair of insulation sheets, and a plurality of conductors that are held between and covered with the pair of insulation sheets in a state that the plurality of conductors are separated to each other. Among from the plurality of conductors, at least conductors with different current capacities are different in thickness to each other.
Abstract:
An imprinted micro-structure includes a substrate having a first layer in relation thereto. First, second, and third micro-channels are imprinted in the first layer and have first, second, and third micro-wires respectively located therein. A second layer is adjacent to and in contact with the first layer. Imprinted first and second connecting micro-channels including first and second connecting micro-wires are in contact with the first and second micro-wires respectively and are isolated from the third micro-wire. A third layer is adjacent to and in contact with the second layer and has an imprinted bridge micro-channel with a bridge micro-wire contacting the first and second connecting micro-wires and separate from the third micro-wire so that the first and second micro-wires are electrically connected and electrically isolated from the third micro-wire.
Abstract:
A semiconductor device includes a semiconductor chip, a plurality of external terminals, and a board. The board includes a first main surface in which a plurality of first electrodes electrically connected to the semiconductor chip are formed, a second main surface in which a plurality of second electrodes electrically connected to the plurality of external terminals are formed, and a plurality of interconnect layers, provided between the first main surface and the second main surface, for forming a plurality of signal paths that electrically connect the first electrode and the second electrode corresponding thereto. The interconnect layer includes a plurality of metal members which are dispersedly disposed at a distance shorter than an electromagnetic wavelength equivalent to a signal band of a signal supplied to the signal path, in the vicinity of a portion in which a structure of an interconnect for forming the signal path is changed.
Abstract:
An exemplary printed circuit board includes a substrate, a differential transmission line, and at least two weld pad pairs. The differential transmission line and the at least two weld pad pairs are disposed on the substrate. The differential transmission line includes two parallel signal conductors disposed on the substrate. Each of the two signal conductors is electrically connected to an edge of one of the weld pads of a respective pair of the at least two weld pad pairs. Thereby, the two signal conductors of the differential transmission line can extend in the same distance anywhere, particularly in the position where the two signal conductors pass the two weld pad pairs. As a result, the coupling performance and the capability of the differential transmission line to resist electromagnetic interference are both enhanced.
Abstract:
A flexible wiring board is provided having a wiring structure which can reduce transmission loss by reducing impedance mismatching even if being folded in a three-dimensional manner. In a flexible wiring board 10 having a characteristic impedance control circuit 20, the flexible wiring board has a planar projection shape of a folded spot 20A in the characteristic impedance control circuit after folding in an arc state along a tangent.
Abstract:
An exemplary printed circuit board includes a substrate, a differential transmission line, and at least two weld pad pairs. The differential transmission line and the at least two weld pad pairs are disposed on the substrate. The differential transmission line includes two parallel signal conductors disposed on the substrate. Each of the two signal conductors is electrically connected to an edge of one of the weld pads of a respective pair of the at least two weld pad pairs. Thereby, the two signal conductors of the differential transmission line can extend in the same distance anywhere, particularly in the position where the two signal conductors pass the two weld pad pairs. As a result, the coupling performance and the capability of the differential transmission line to resist electromagnetic interference are both enhanced.
Abstract:
Terminal electrodes 9 for carrying a high frequency device 3 are formed on a surface of a circuit board having its reverse surface covered with a reverse surface conductor layer 6, and a plurality of signal lines 2 for exchanging a signal between the high frequency device 3 and an external circuit are formed thereon. The terminal electrode 9 is arranged at the center of the circuit board, and the signal lines 2 radially extends from the terminal electrode 9. Electromagnetic interference between the signal lines 2 can be reduced, so that out-of-band attenuation characteristics and isolation characteristics can be satisfactorily exhibited in a case where the high frequency device 3 is a duplexer.
Abstract:
In a fitting region for a SAW filter which includes langasite as its piezoelectric element, there are included an input side terminal electrode and an output side terminal electrode which are connected to an input terminal and to an output terminal of the SAW filter. To each of the terminal electrodes, at a position which is separated by just a predetermined distance from the fitting region of the SAW filter, there is connected a micro strip line which extends in mutually opposite directions along a direction which is parallel to the transmission direction of a frequency signal within the SAW filter. A slit is provided in the fitting region of the SAW filter and extends in a direction which intersects the transmission direction of the frequency signal within the SAW filter. A plurality of through holes are provided in the printed substrate and electrically connect together its surface and its rear surface which is grounded. Furthermore, there is provided a protective member which has a conductive surface and which is in contact with the surface of said filter, and said conductive surface of said protective member which is in contact with the surface of said filter is set so as to be of the same size as the surface of said filter, or so as to be smaller than it.
Abstract:
An electrical connection board includes electrical connection terminals on one face with a view toward connecting with a semiconductor component and electrical connection tracks connected respectively to these terminals. The terminals are arranged in a square matrix having two orthogonal directions. On its face, the board includes a multiplicity of identical adjacent connection groups, each group having N adjacent terminals and N tracks placed along this direction while extending towards an edge of the matrix. The terminals of a group are offset by one pitch relative to the terminals of an adjacent group. The board and a semiconductor component are connected together by electrical connection balls.