Abstract:
The invention provides a layer configuration indicator portion enabling the configuration of layers to be identified easily in a multilayer board. The configuration of the respective layers of a multilayer board can be identified easily by applying two copper foils per a single layer for a number corresponding to the number of layers constituting the multilayer board on an outer layer of the multilayer board, by which layer configuration identification marks are composed, and displaying a maximum of six types of configurations per each layer by having three types of statuses indicated on the layer configuration indication marks, which are “covering the mark with resist”, “covering the mark with resist and silk”, and “not covering the mark with resist or silk”.
Abstract:
A multi-layer PCB includes a first signal layer, a ground layer, a second signal layer, a third signal layer, an electric power layer, and a fourth signal layer, including a first insulating layer arranged between the first signal layer and the ground layer; a second insulating layer arranged between the ground layer and the second signal layer; a third insulating layer arranged between the second signal layer and the third signal layer; a fourth insulating layer arranged between the third signal layer and the electric power layer; and a fifth insulating layer arranged between the electric power layer and the fourth signal layer, wherein at least one of the first signal layer, the second signal layer, the third signal layer, and the fourth signal layer includes a pattern.
Abstract:
The disclosed board fabrication techniques and design features enable the construction of a reliable, high-layer-count, and economical backplane for routers and the like that require a large number of signaling paths across the backplane at speeds of 2.5 Gbps or greater, as well as distribution of significant amounts of power to router components. The disclosed techniques and features allow relatively thick (e.g., three- or four-ounce copper) power distribution planes to be combined with large numbers of high-speed signaling layers in a common backplane. Using traditional techniques, such a construction would not be possible because of the number of layers required and the thickness of the power distribution layers. The disclosed embodiments use novel layer arrangements, material selection, processing techniques, and panel features to produce the desired high-speed layers and low-noise high-power distribution layers in a single mechanically stable board.
Abstract:
A package substrate having separate routing layers for transmitter signals and receiver signals, which signals are routed in differential pairs. The differential pairs of signal routing lines are isolated between a separate ground plane for transmitter and receiver traces and dedicated power planes, where a single power plane is dedicated to a single differential pair of signal routing lines. In this manner, a high degree of electrical isolation exists not only between the transmitter signal traces and the receiver signal traces, which are on different layers, but also between different differential pairs of signal routing lines on the same layer, each of which has its own dedicated power plane. Thus, a very high speed core routing system can be designed in a package substrate that can then be adapted as necessary to support a broad range of different integrated circuit designs.
Abstract:
A multi-layer circuit board includes first, second, third, fourth and fifth insulating substrates, first, second, third and fourth signal wiring layers, a ground wiring layer and a power wiring layer. The insulating substrates and the wiring layers are press-bonded to each other to form the circuit board with a thickness of about 1.0 mm. Each of the first and fifth insulating substrates has a thickness ranging from 5.225 to 5.775 mil. Each of the second and fourth insulating substrates has a thickness ranging from 7.6 to 8.4 mil. The third insulating substrate has a thickness ranging from 3.8 to 4.2 mil. The first signal wiring layer has a first resistance with respect to the ground wiring layer. The second signal wiring layer has a second resistance with respect to the ground wiring layer and the power wiring layer. The third signal wiring layer has a third resistance with respect to the ground wiring layer and the power wiring layer. The fourth signal wiring layer has a fourth resistance with respect to the power wiring layer. The first, second, third and fourth resistances are within the range of 49.5 to 60.5 ohms.
Abstract:
A multilayer printed circuit board and a corresponding fabrication method are disclosed, which circuit board achieves a relatively high degree of wiring density and a relatively high degree of wiring design freedom. These advantages are obtained in the inventive printed circuit board by electrically connecting power conductors or ground conductors using through holes. On the other hand, signal conductors in any two adjacent signal wiring layers are electrically connected using via holes extending only through an intervening electrically insulating layer. Preferably, the electrically insulating layer is a layer of photosensitive resin and the via holes are formed using conventional photolithographic techniques.
Abstract:
A printed circuit module supports host processors and memories. The module permits easy upgrades and repairs of the semiconductor devices without requiring modification of the motherboard. The module includes a multilayer printed circuit board with a symmetrical design, permitting chips to be placed on both sides of the board. Microvias connect the contact points on a signal layer directly to a ground layer on the printed circuit board, thereby reducing the need for escape routing. This greatly simplifies the design layout of the module, The ground layer is located between two signal layers, thereby decreasing the crosstalk between the signal layers. The symmetrical design permits drilled vias to extend from a quadrant of one chip and exit through a similar quadrant on the opposite side of the circuit board. The modular design also simplifies impedance matching. Testing of the module may also be accomplished even when the module is not fully populated through the use of test bypass circuitry.
Abstract:
A printed board 10 is provided with two ground layers 3a, 3b. These ground layers 3a, 3b are electrically insulated inside the printed board. By connecting circuits with different characteristics (low frequency and high frequency, for example) with the different ground layers 3a, 3b, interference of these circuits caused due to a common ground can be minimized.
Abstract:
A method for producing aligned passages through substrate materials, in which the projection of the inlet and outlet openings does not coincide, uses displaced application of etching windows on opposite sides and corresponding pronounced under-etching of these windows. By applying displaced etching windows on both sides of the substrate and through-etching the substrate through these windows, `oblique` passages are obtained through the substrate. By a suitable location of the windows it is also possible to produce branched passages with more than one outlet opening.
Abstract:
A plurality of conductive sheets are stacked in spaced relationship. A plurality of dielectric sheets are stacked in the spaces between the conductive sheets to form with the conductive sheets an integral structure. A source of bias voltage is coupled to a first pair of the conductive sheets, a source of clock pulses is coupled to a second pair of the conductive sheets having a larger characteristic impedance than the first pair, and a source of logic levels is coupled to a third pair of the conductive sheets having a larger characteristic impedance than the second pair. The sources are coupled to their respective pairs of conductive sheets such that alternate conductive sheets are grounded. The terminal pins of circuit board connectors are selectively connected to the conductive sheets.