Abstract:
A spectrophotometer measures optical absorption of light by a sample received in a sample cell. An array of optical elements disperses the light over a spectral pattern, and a fiber optic beam splitter splits light at a selected spectral band into a reference component and a test component. Detectors measure the intensity of the reference component and the test component after the test component passes through the sample. The fiber optic beam splitter includes a plurality of strands arranged with first ends terminating in a common circular area. Opposite ends of peripheral strands are collected into a first set that transmits the test component while the remaining strands for a second set that transmits the reference component. Preferably, there is a single, central, large strand surrounded by smaller strands. Two emitters are provided for light of two different types, such as visible and UV. The optical array forms a collimated beam having an inner core of one type of light and an outer shell of the other. Specially constructed optical elements then reflect and refract the collimated beam. A motor drives a mirror to scan the beam across an optical slit positioned in front of the beam splitter to select a desired spectral band.
Abstract:
The invention contemplates a two-dimensional spectrometer wherein a single catadioptric system is both the collimator and the camera for two-pass use of any two-dimensionally dispersed spectrometer. Off-axis aberration effects are minimized by arranging a fiber optic as the light-entrance aperture, on the central optical axis of the spectrometer and in close proximity to or centrally inserted in a two-dimensional array detector at the image plane. In other words, the grating of the spectrometer is also a reflector which folds admitted and dispersed light for return to the image plane along essentially the same path and through the same optical elements as are used on the incoming pass of light to the diffraction grating. The invention is shown for its applicability to each of various types of two-dimensional spectrometer-design configurations.
Abstract:
A photometrical apparatus has a first light receiving element, and a second light receiving element less sensitive to temperature and other environmental influences than said first light receiving element whereby a value Pm of measured quantity of light from the subject is calculated from the following formula ##EQU1## Pr designates a quantity of light from a standard light source, Dr and Dm designate outputs of the first light receiving element generated by the light from the standard light source and the subject, Dpo and Dpt designate outputs of the first light receiving element generated by the light from the reference light source and the subject, and Dso and Dst designate outputs of the second light receiving element generated by the light from the reference light source and the subject.
Abstract:
A filter spectrograph unit for use in a micro-Raman spectrometer system or a remote sensing system is formed by combining an infinitely variable spectral line rejection filter (having appropriate entrance optics) functionally and operatively with a dispersing spectrograph. The line rejection filter is a modified form of a zero-dispersion double monochromator having an input light signal including laser light scattered from, for examle, minute Raman-active particles. The modified double monochromator includes an acylindrical mirror positioned so that the laser line will exit through an aperture in the mirror and all other spectral lines will be reflected and reformed by the modified double monochromator into an output light signal containing all of the original spectral information, less the rejected laser line. The dispersing spectrograph is integrally coupled to the modified double monochromator and produces from the output light signal a display of the entire Raman spectrum suitable for parallel readout and rapid data analysis.
Abstract:
Optical devices that combine imaging with spectral detection usually require bulky or expensive optics or are limited in the spectral measurements that can be made. The disclosed device uses a lens and mirror to provide two image planes: one for a pixelated detector and the other for an optical fiber assembly. The optical fiber assembly may be scanned over most or all of the field of view, or this may be achieved with a fixed fiber assembly and translatable mirror. Multiple fibers may be included in the assembly and multiple measurement or other devices may be connected to the remote ends of the optical fibers.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associate color of a structure is also provided.
Abstract:
A handheld LIBS spectrometer system features an optics stage moveable with respect to a housing and including a laser focusing lens. A laser source is mounted in the housing for directing a laser beam to a sample via the laser focusing lens. A detection fiber is mounted in the housing and is fixed relative thereto. A first mirror is fixed relative to the housing and includes an aperture for the laser beam. This mirror is oriented to re-direct plasma radiation for delivery to the detection fiber. A controller subsystem is responsive to the output of a spectrometer subsystem and is configured to control the laser source and the optics stage.
Abstract:
Disclosed are a fluorescence microscope light source apparatus and a fluorescence microscope capable of obtaining high-luminance light in a wavelength of 500 to 550 nm and having reduced background noise when a sample is observed. The fluorescence microscope light source apparatus to be installed in a fluorescence microscope including an illumination light bandpass filter includes: a laser diode that emits blue light as excitation light; a phosphor that converts the excitation light from the laser diode into illumination fluorescence with a wavelength region of 500 to 550 nm; an optical system that extracts the illumination fluorescence from the phosphor; a first condenser lens that condenses the excitation light onto the phosphor; a light guide body having one end face on which the illumination fluorescence is incident and the other end face from which the illumination fluorescence exits; and a second condenser lens that condenses the illumination fluorescence onto the one end face of the light guide body. A band-elimination filter that blocks or attenuates light, out of the illumination fluorescence, in a wavelength region including a transmission maximum wavelength and including no transmission minimum wavelength in the illumination light bandpass filter is provided on a light path of the illumination fluorescence.
Abstract:
A biometric sensor that measures biometric information and a biometric analysis system including the biometric sensor are provided. The biometric sensor may include: a light source configured to emit light toward a region of interest of an object under examination, the light being diffused at the region of interest; a collimator that includes a though-hole and is configured to collimate the diffused light received from the region of interest; and a spectrometer configure to analyze the diffused light transmitted by the collimator.
Abstract:
A biometric sensor that measures biometric information and a biometric analysis system including the biometric sensor are provided. The biometric sensor may include: a light source configured to emit light toward a region of interest of an object under examination, the light being diffused at the region of interest; a collimator that includes a though-hole and is configured to collimate the diffused light received from the region of interest; and a spectrometer configure to analyze the diffused light transmitted by the collimator.