Abstract:
An inspection apparatus is capable for inspecting at least one light-emitting device. The inspection apparatus includes a working machine and an inspection light source. The inspection light source is disposed on the working machine and located above the light-emitting device. A dominant wavelength of the inspection light source is smaller than a dominant wavelength of the light-emitting device so as to excite the light-emitting device and get an optical property of the light-emitting device.
Abstract:
A method of forming of biological sensing structures including a portion of a substrate is recessed to form a plurality of mesas in the substrate. Each of the plurality of mesas has a top surface and a sidewall surface. A first light reflecting layer is deposited over the top surface and the sidewall surface of each mesa. A filling material is formed over a first portion of the first light reflecting layer. A stop layer is deposited over the filling material and a second portion of the first light reflecting layer. A sacrificial layer is formed over the stop layer and is planarized exposing the stop layer. A first opening is formed in the stop layer and the first light reflecting layer. A second light reflecting layer is deposited over the first opening. A second opening is formed in the second light reflecting layer.
Abstract:
Provided herein is an apparatus, including a reflective surface configured to reflect photons onto a surface of an article, a stage configured to support the article, and an assembly. In some embodiments, the assembly configured to radiate photons through the article to the reflective surface. The assembly is further configured to image the article with irradiance of the photons.
Abstract:
Electronic field effect devices, and methods of manufacture of these electronic field effect devices are disclosed. In particular, there is disclosed an electronic field effect device which has improved electrical properties due to the formation of a highly mobile two-dimensional charge-carrier gas in a simple structure formed from diamond in combination with polar materials.
Abstract:
A device can be used for establishing gas concentrations in an examination volume. A radiation source is configured to generate an electromagnetic beam. A beam guiding apparatus is arranged downstream of the radiation source. The beam guiding apparatus is configured to set a plurality of variations of beam guidance of the beam entering the beam guiding apparatus in an observation plane in the examination volume. A spectrometer is arranged downstream of the beam guiding apparatus. The spectrometer is configured to carry out a spectral analysis of the beam leaving the beam guiding apparatus. An evaluation unit is configured to establish in the observation plane a 2D concentration distribution for one or more gases in the examination volume on the basis of the spectral analysis for different variations of beam guidance.
Abstract:
The present invention relates to a real-time PCR monitoring apparatus for real-time monitoring production of reaction product produced during the reaction while performing nucleic acid amplification such as PCR for various kinds of trace samples. Specifically, the present invention relates to an apparatus for real-time monitoring biochemical reaction for efficiently dividing interference between an excitation light and a fluorescence, which includes a polarizer, a polarizing beam splitter, a polarization converter and so on.
Abstract:
In one embodiment, the invention is a spectrophotometer with a modular 45/0 head. One embodiment of an apparatus for measuring a reflectance of a sample includes a plurality of light emitting diodes for emitting light, a reflective housing positioned above the plurality of light emitting diodes, where the reflective housing is a dome having a plurality of apertures formed around its perimeter, a sample channel for capturing a first portion of the light, where the first portion of the light interacts with the sample, and a reference channel for capturing a second portion of the light, where the second portion of the light is independent of the sample.
Abstract:
A reflective scatterometer capable of measuring a sample is provided. The reflective scatterometer includes a paraboloid mirror, a light source, a first reflector, a second reflector and a detector. The paraboloid mirror has an optical axis and a parabolic surface, wherein the sample is disposed on the focal point of the parabolic surface and the normal direction of the sample is parallel with the optical axis. A collimated beam generated from the light source is reflected by the first reflector to the parabolic surface and then is reflected by the parabolic surface to the sample to form a first diffracted beam. The first diffracted beam is reflected by the parabolic surface to the second reflector and is then reflected by the second reflector to the detector.
Abstract:
A detection apparatus arranges a light source, a curved surface prism having a curved surface and a plane surface, a metal film placed on the plane surface of the prism to be held adjacently to a test sample, and a reflecting member for reflecting light such that light emitted by the light source enters the prism through the curved surface and is reflected by the metal film, then by the reflecting member, and again by the metal film. The detection apparatus is adapted to detect an optical change in the test sample by means of surface plasmon generated on the metal film. In the detection apparatus, divergent light is made to enter the prism through the curved surface to collimate the incident light by means of the curved surface. The apparatus can suppress the broadening of the resonant bandwidth so as to operate as a monitor with a higher degree of precision.