Abstract:
A non-invasive method and apparatus are described for measuring the oxygen concentration in the infected cells of the nodules of nitrogen fixing plants in the laboratory or field. In many cases, this information can be used to estimate the nitrogenase activity, and therefore the nitrogen fixation rate, in these nodules since recent studies have shown that the oxygen concentration limits and controls nitrogenase activity under most environmental conditions. Using the same apparatus, a method to measure nodule respiration and nodule oxygen permeability is also described. The nodule oxygen concentration in the infected cells of nodules is maintained at very low levels and has not been measurable previously by non-invasive techniques. The fractional oxygenation of plant hemoglobin is measured spectroscopically using one or more modulated light sources, a number of optical fibres to convey the light to and from the nodules, a photodetector to measure the light passing through the nodule and a detection system such as a photodiode coupled to a microcomputer or a lock-in amplifier to process the output signal.
Abstract:
A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.
Abstract:
The device makes use of at least one photoemitter and at least one photodetector, operating in conjunction with the inspection glass of the oven against which the coffee beans tumble continually throughout the roast; the photodetector is located remotely, and receives its light input through an optic fiber link the transmitting end of which is supported, together with the photoemitters, by a block fitted to the discharge hatch of the oven directly over the inspection glass and invested with a coolant in order to maintain the temperature at the monitoring location within the preferred operating limits specified for the photoemitters and the optic fiber material.
Abstract:
A photometer in which a measuring phase, a reference phase and a dark phase are produced by means of a chopper. These phases are staggered in time, so that a single detector can be provided for all phases. In the photometer the object to be measured is situated between two light conductors, the one light conductor leading to the detector and the other light conductor leading to the chopper input. The chopper output is carried by an additional light conductor to the detector.
Abstract:
Radioactive materials can be safely analyzed by an emission spectroscopic analyzer comprising an exciting device for exciting a radioactive material to be analyzed to emit light. The exciting device is enclosed in a radiation shielding wall. A detecting device detects the emitted light. The detecting device is located outside the radiation shielding wall. A light-transmitting device is provided between the exciting device and the detecting device such that the emitted light impinging on a first end of the light-transmitting device will be received at the detecting device as light having been transmitted through the light-transmitting device and emitted from a second end of the light-transmitting device. The light-transmitting device penetrates a hole made in the radiation shielding wall which has a sealing structure to prevent radiation leakage. The light-transmitting device penetrates the hole with a curvature. A lens system is attached to the second end of the light-transmitting device to permit visual observation of the emitted light therethrough. A fine adjustment device adjusts the position of the first end of the light-transmitting device in relation to the emitted light from the material to be analyzed.
Abstract:
Examples of a spectroscopy probe for performing measurements of Raman spectra, reflectance spectra and fluorescence spectra are disclosed. The integrated spectral probe can comprise one or more light sources to provide a white light illumination to generate reflectance spectra, an excitation light to generate an UV/visible fluorescence spectra and a narrow band NIR excitation to induce Raman spectra. The multiple modalities of spectral measurements can be performed within 2 seconds or less. Examples of methods of operating the integrated spectroscopy probe disclosed.
Abstract:
An optical system for sensing an environmental parameter, comprising: an optical pulse generator for generating an excitation pulse; a pulse splitter for splitting the excitation pulse into a sensing pulse and a reference pulse; a sensing arm for receiving the sensing pulse, the sensing arm comprising an emission sensor for sensing the environmental parameter, the optical emission sensor generating a first measurement pulse having a measurement wavelength; a reference arm for receiving the reference pulse, the reference arm comprising an emission artefact adapted to convert the reference pulse into a second measurement pulse having the measurement wavelength; a time delay line for delaying a relative propagation of the measurement pulses; a light detector for measuring an optical energy of the first and second measurement pulses; and an optical link for optically connecting the pulse generator to the pulse splitter, and the sensing and reference arms to the light detector.
Abstract:
An optical system for sensing an environmental parameter, comprising: a pulse generator for generating a first pulse having a first wavelength and a second pulse having a second wavelength; a pulse splitter for splitting each one of the first and second pulse into a sensing pulse and a reference pulse; a sensing arm for receiving the sensing pulses therefrom and comprising a spectro-ratiometric sensor; a reference arm for receiving the reference pulses; a time delay line for delaying a relative propagation of the sensing pulses and the reference pulses; a light detector for measuring an optical energy of the sensing pulse and the reference pulse, for the first and second wavelengths; and at least one optical link for optically connecting the pulse generator to the pulse splitter, and the sensing and reference arms to the light detector.
Abstract:
A spectrometer (1) comprises a light source (2), a monochromator (3) with at least one diffraction grating (4), a monochromator housing (5), an order sorting filter (7), a microplate receptacle (12) and a controller (6). The order sorting filter (7) of the spectrometer (1) comprises a substrate (23), a first optical thin film (24) and a second optical thin film (25), wherein, in a spatially partly overlapping and interference-free manner, the first optical thin film (24) is arranged on a first surface (26) and the second optical thin film (25) is arranged on a second surface (27) of the substrate (23). A spectrometer (1) equipped with a respective order sorting filter is used in a scanning method for detecting the absorption spectrum of samples examined in wells (14) of microplates (13).
Abstract:
Embodiments regard 3D optical metrology of internal surfaces. Embodiments may include a system having an imaging device to capture multiple images of an internal surface, including a first image that is captured at a first location on an axial path and a second image that is captured at a second location on the axial path, and a transport apparatus to move the imaging device along the axial path. The system further includes a control system that is coupled with the imaging, wherein the control system is to receive the multiple images from the imaging device and to generate a 3D representation of the surface based at least in part on content information and location information for the multiple images.