Abstract:
A wide bandwidth linear amplifier (10) that has an operating band in excess of 1 GHz mounts the high power dissipating components (11) of the amplifier (10), and the components 917, 18) that control the high frequency gain and stability of the amplifier (10) onto a daughter board (32) that has a high thermal conductivity. The daughter board (32) and the remaining circuit components (21, 22, 23, 24, 26a, 26b) are then mounted on a mother board (31) that has a lower thermal conductivity. The assembly (30) reduces the circuit's parasitic inductance (46, 47, 48, 49) and parasitic capacitance (51, 52), and provides unconditional stability at high frequencies.
Abstract:
A microstrip structure includes a microstrip transmission line having a characteristic impedance, a contact pad for interconnection of the transmission line to an external device, and a compensation line connected between the contact pad and one end of the microstrip transmission line. The contact pad has larger dimensions than the transmission line and thus introduces parasitic capacitance. The compensation line is a narrow line having high impedance and is selected such that its equivalent inductance resonates with the parasitic capacitance at the upper frequency of the range of frequencies over which the transmission line is intended to be operated, thereby matching the contact pad to the transmission line.
Abstract:
In an electrical circuit including a first array and a second array of electrical components mounted on a circuit board having an electrically conductive cladding, there is provided a system for interconnecting the components of the first array to the components of the second array with parallel signal channels for reduction of crosstalk among the channels. In each of the channels, there is one electrically conductive strip formed within the cladding and providing for a path of current in a first direction, and a second conductive path for current in the reverse direction. The second path includes a wire lead formed as a partial loop extending in a plane perpendicular to a plane of the cladding, and also includes a pad formed of material of the cladding and coplanar with the conductive strip. The pad is connected to a terminus of the wire loop. The pad is insulated from the conductive strip and forms therewith a portion of a loop which generates a magnetic field in the presence of currents flowing through the two paths. Magnetic coupling provided by the wire loops has a positive coefficient of mutual inductance which cancels negative mutual inductance of loops lying in a plane of the cladding to reduce crosstalk among the channels.
Abstract:
Apparatus for adjusting capacitance between an electronic component and external circuitry. The electronic component is unitarily provided with a plurality of conductive leads for connection to external circuitry with at least one of the leads being configured to provide integral means for adjustment of capacitance. The configured lead is bent for a turnabout of about 180 degree change of direction such that when the component is mounted on a printed circuit board the portion of the lead distal of the component extends above the board and is positionally adjustable providing adjustable capactive coupling to other circuit components.
Abstract:
A method for preparing a printed circuit board for mounting of surface mounted RF components such that the lead inductance of the components is minimized. The process consists of producing plated through apertures in the printed circuit board to create a component body hole with lead contacts extending to the edge of the component body hole. The resulting aperture is then blanked to remove portions of the metal lining to provide electrical isolation between the lead contacts while maintaining lead contacts that extend to the edge of the component body hole. A component is then soldered into position such that solder is wicked through the plated through apertures to create solder contact of the leads at the edge of the component body hole. This results in substantial reduction in lead inductance improving RF amplifier gain and stability and improving bandwidth characteristics.
Abstract:
An example sensor interposer employing castellated through-vias formed in a PCB includes a planar substrate defining a plurality of castellated through-vias; a first electrical contact formed on the planar substrate and electrically coupled to a first castellated through-via; a second electrical contact formed on the planar substrate and electrically coupled to a second castellated through-via, the second castellated through-via electrically isolated from the first castellated through-via; and a guard trace formed on the planar substrate, the guard trace having a first portion formed on a first surface of the planar substrate and electrically coupling a third castellated through-via to a fourth castellated through-via, the guard trace having a second portion formed on a second surface of the planar substrate and electrically coupling the third castellated through-via to the fourth castellated through-via, the guard trace formed between the first and second electrical contacts to provide electrical isolation between the first and second electrical contacts.
Abstract:
A system and method for integrating a magnetic component within a power converter includes a coil integrated on a PCB. The PCB includes multiple layers and traces on each layer to form a single coil or to form multiple coils on the magnetic component. The PCB further includes at least one opening in the PCB through which a core component may pass, such that the magnetic component is defined by the coils and the core material. To reduce eddy currents built up within the traces, the dimensions of traces on a layer are varied and the position of traces between layers of the PCB are varied. The widths and locations of individual traces are selected to reduce coupling of the trace to leakage fluxes within the magnetic component. A floating conductive layer may also be provided to still further reduce the magnitude of eddy currents induced within the coil.
Abstract:
The invention concerns a device for controlling at least one diode 2, the control device comprising an electrical card 4 comprising a printed circuit 5 on which the following are mounted: a diode 2, a front component 7 and a storage capacitor 9 connected in such a way as to form a circuit loop 17 extending substantially in a thickness of the electrical card 4.
Abstract:
A printed circuit board (PCB), a method for processing PCB and an electronic apparatus. The method for processing PCB may comprise: forming a hole in the PCB, wherein the PCB includes a metal matrix and at least two substrate layers, at least one of the at least two substrate layers has a geoelectric layer thereon; and the metal matrix is fixed in a slot provided in the substrate, the formed hole contacts both the geoelectric layer and the metal matrix; and providing conductive substances in the hole, with the conductive substances in the hole being in contact with the inner geoelectric layer and the metal matrix, so that the geoelectric layer and the metal matrix are in conduction with each other.
Abstract:
The object of the present invention is to provide a multi-layer wiring board which is easy to adjust the characteristic impedance and is able to adapt to the narrow-pitch tendency of terminals, and a process for manufacturing the same.The present invention attain the object by providing a multi-layer wiring board, in which more than one wiring layers are stacked on a substrate with an insulating layer between them, wherein a wire formed in the wiring layer has a double layered structure consists of a first layer and a second layer, and said first layer is made of a first conductive material and said second layer is made of a second conductive material having relative magnetic permeability larger than that of the first conductive material, thereby the characteristic impedance of said wire is adjusted to a value closer to 50 ohm than that of a wire which has the same thickness as of said wire having the double layered structure, and is made of said first conductive material only, and a process for manufacturing the same.