Abstract:
Embodiments include a package substrate, a method of forming the package substrate, and a semiconductor package. A package substrate includes a conductive layer in a dielectric, a first trace and a first via pad of the conductive layer having a first thickness, and a second trace and a second via pad of the conductive layer having a second thickness. The second thickness of second trace and second via pad may be greater than the first thickness of the first trace and first via pad. The dielectric may include a first dielectric thickness and a second dielectric thickness, where the second dielectric thickness may be less than the first dielectric thickness. The package substrate may include a third via having a third thickness on the first via pad, and a fourth via having a fourth thickness on the second via pad, wherein the third thickness is greater than the fourth thickness.
Abstract:
A wiring substrate device includes a wiring substrate, a plurality of terminals each of which is provided upright on the wiring substrate and has a lower end, an upper end and a narrowed part between the lower end and the upper end, and a plurality of solders each of which has a melting point lower than the terminals and covers a surface of the corresponding terminal.
Abstract:
In some embodiments, methods include drilling one or a plurality of PTHs with any industrial grade drill to fabricate holes with positive etch back, flooding the PTHs with a dilute solution of an acrylate monomer/oligomer containing an appropriate level of peroxide initiator, polymerizing the acrylate, and then rising the PTHs with the solvent used in the formulation of the acrylate material. In one embodiment, the printed circuit board may include a substrate comprising a plurality of metal layers separated by a plurality of insulating layers; a plurality of plated through holes formed in the substrate, each plated through hole comprising: recesses formed at each insulating layer, copper lands between the recesses, a polymer coating in each recess, and a metal layer lining the plated through hole.
Abstract:
Some forms relate to a stretchable computing device that includes a stretchable body; a first electronic component embedded within the stretchable body; a second electronic component embedded within the stretchable body; and wherein the first electronic component and the second electronic component are connected by stretchable electrical connectors that include vias. The stretchable electrical connectors are non-planar and/or may have a partial zig-zag shape and/or a partial coil shape. In some forms, the stretchable computing device further includes a textile attached to the stretchable body.
Abstract:
A method of manufacture of a circuit board without annular through-hole rings and thus allowing a higher component density includes a base layer, a first wire pattern layer, and a second wire pattern layer on both sides of the base layer. A portion of the base layer not covered by the first wire pattern layer defines at least one first hole. The circuit board further includes a wire layer. The wire layer includes at least a first portion and a second portion connecting to the first portion. The first portion is filled in the first hole. The second portion is formed on the first portion extending away from the base layer. A diameter of the second portion is less than an aperture diameter of the first hole. The wire layer is electrically conductive between the first wire pattern layer and the second wire pattern layer through the first portion.
Abstract:
The electronic package includes a substrate that includes a plurality of dielectric layers and conductive routings between the plurality of dielectric layers; wherein the substrate further includes a plurality of thermal finned vias that electrically connect the conductive routings within the substrate to one another; and an electronic component mounted on the substrate, wherein the finned via transfers heat from the electronic component to the substrate and electrically connects the conductive routings within the substrate to the electronic component.
Abstract:
A selective segment via plating process for manufacturing a circuit board selectively interconnects inner conductive layers as separate segments within the same via. Plating resist is plugged into an inner core through hole and then stripped off after an electroless plating process. Stripping of the electroless plating on the plating resist results in a plating discontinuity on the via wall. In a subsequent electroplating process, the inner core layer can not be plated due to the plating discontinuity. The resulting circuit board structure has separate electrically interconnected segments within the via.
Abstract:
A printed circuit board includes a laminated core including at least an internal conductive layer, and a build-up layer on the laminated core. The build-up layer includes a top conductive layer. A plurality of microvias is disposed in the build-up layer to electrically connect the top conductive layer with the internal conductive layer. A power/ground ball pad array is disposed in the top conductive layer. The power/ground ball pad array includes power ball pads and ground ball pads arranged in an array with a fixed ball pad pitch P. The power/ground ball pad array includes a 4-ball pad unit area that is comprised of only one ground ball pad and three power ball pads, or comprised of only one power ball pad and three ground ball pads. The 4-ball pad unit area has a rectangular shape and a dimension of about 2P×2P.
Abstract:
The invention concerns a method for producing a printed circuit for a chip card module. This method involves producing two layers of electrically conductive material insulated from each other by a layer of insulating material, connection holes extending through the layer of insulating material and blocked by one of the layers of electrically conductive material, an area free of conductive material being provided in the other layer of electrically conductive material around the connection holes. The invention also concerns a printed circuit for a chip card produced using this method and a chip card module including such a printed circuit.
Abstract:
A printed circuit board has a double-sided substrate with an insulation layer, a bonding member, a base layer of an aluminum material, and a circuit pattern; a second insulation layer; a second bonding member; a second base layer; a through hole; a zinc substitution layer; a plating layer; and a second circuit pattern.