Abstract:
A semiconductor device, provided in a plastic encapsulated package, having a semiconductor chip, a lead and a member for electrically connecting them together. The semiconductor device has one or more first holes respectively extending from one surface of the package to a first side of the lead which is provided inside of the package, and has one or more second holes formed which are aligned with the first holes, respectively, in a manner such that each second hole is extended from the opposing surface of the package to a corresponding location on a second side of the lead and is aligned with a corresponding, opposing first hole, in the package, extending to the first side of the lead. These holes are provided as a plurality of sets of individual pairs of aligned holes respectively extending inwardly, from opposing surfaces of the package, to opposite sides of the corresponding leads. In the device the leads or the leads with resin act as partitions thereby effecting isolation between the first and second holes of each pair aligned holes.
Abstract:
A surface-mount power resistor may be fabricated using a power resistor of conventional design as its core. A conventional resistor is reworked so as to flatten its leads from a point near their emergence from the generally tubular body of the resistor to the ends of the leads. The reworked resistor is then encapsulated from a point of the flattened portion of one lead to a corresponding point on the other lead, with the resulting mold being shaped as to have at least two opposing flat surfaces. The ribbon-shaped portions of the leads which exit from the molded body are then shaped as desired to afford the finished product. Similar surface-mount electrical components may be fabricated for any component with axial leads.
Abstract:
A modified TO-8 package has a kovar header supporting an FET amplifier hermetically sealed by a cover welded along the seam between the cover edge and header edge. The header is formed with three circular openings in space quadrature about the package axis. A circular copper spacer contacts the header and is formed with channels extending radially outward from the header openings to define with the openings three lead channels. A lead having a right angle bend is seated in each channel having an upstanding pin portion above the header. The volume between the lead and the header is filled with hermetically sealing low expansion borosilicate glass. The remainder of each channel is filled or coated with nonconductive epoxy. The depending portions of the leads are flush with the bottom of the copper spacer. In another form the base and cover are rectangular in the form of a four-lead DIP package also having the channels, right-angle-bent leads flush with the bottom surrounded by hermetically sealing insulating low expansion borosilicate glass.
Abstract:
A pair of retention clips are disposed around end flanges of a connector to be mounted to a printed circuit board and have board-proximate surface sections which are firmly secured to the board surface to hold the connector firmly to the board without screws, rivets or the like. The clips allow limited axial expansion and contraction of the connector during significant changes in temperature by securely engaging the flanges. Where the retention clips are metal, the securing method could involve vapor phase reflow soldering which also solders the terminals to the conductors on the board surface. Where the retention clips are plastic, the securing method could involve actinic radiation curing of adhesive material. Retention clips also can secure an edge connector to an edge of a board.
Abstract:
A method for preparing a printed circuit board for mounting of surface mounted RF components such that the lead inductance of the components is minimized. The process consists of producing plated through apertures in the printed circuit board to create a component body hole with lead contacts extending to the edge of the component body hole. The resulting aperture is then blanked to remove portions of the metal lining to provide electrical isolation between the lead contacts while maintaining lead contacts that extend to the edge of the component body hole. A component is then soldered into position such that solder is wicked through the plated through apertures to create solder contact of the leads at the edge of the component body hole. This results in substantial reduction in lead inductance improving RF amplifier gain and stability and improving bandwidth characteristics.
Abstract:
A high-power electronics device and a method of forming same are disclosed. The high-power electronics device is formed of a plurality of layers including molding compound, a printed circuit board, electrically conductive contacts, at least one electronic component, and molding compound. In an embodiment, a layer of a dielectric carrier is also provided.
Abstract:
An electronic component includes an insulator and an inductor pattern and a capacitor pattern which are arranged in the insulator. The inductor pattern and the capacitor pattern are electrically connected between one end and the other end of the first inductor pattern.
Abstract:
The present invention provides a printed substrate having a novel structure in which substrate terminals can be fixed to the printed substrate without needing a base, and the substrate terminals can be press-fitted into through-holes without applying pressing force to printed wiring and a plating layer in the through-holes, and also provides a printed substrate with terminals that uses this printed substrate. A printed substrate includes through-holes into which the first end portions of substrate terminals are to be inserted. The through-holes each include press-fitting regions into which the first end portion of a substrate terminal is to be press-fitted, and conduction regions arranged so as to oppose the outer circumferential surfaces of the first end portion of the substrate terminal via gaps in directions perpendicular to the axis. Printed wiring is connected to the conduction regions, and a plating layer is adhered to the conduction regions.
Abstract:
A special electric component, such as a motor, an accumulator, or an electric subassembly, having at least one soldering pin for solder-joining the special electric component to a printed circuit board. The soldering pin has a connection end that comprises a front section at a free end of the soldering pin and a first section adjacent the front section. The front section has a width that is smaller than the width of the first section. A printed circuit board assembly and an electric device comprising at least one special electric component.
Abstract:
Provides are a light emitting apparatus and a light unit having the same. The light emitting apparatus comprises a light emitting device comprising a light emitting element and a plurality of external leads, and a plurality of electrode pads under the light emitting device.