Abstract:
In a stacked mounting structure At least a pair of a first connecting terminal and a second connecting terminal is formed, and further, the stacked mounting structure includes a protruding electrode which is provided on at least any one of the first connecting terminal and the second connecting terminal, and an electroconductive paste which is formed on a side surface of an intermediate substrate, and which electrically connects the first connecting terminal and the second connecting terminal. The first connecting terminal and the second connecting terminal are exposed by a recess in a surface of the intermediate substrate. The first connecting terminal and the second connecting terminal are electrically connected via the protruding electrode and the electroconductive paste in the recess which is provided in the intermediate substrate.
Abstract:
A package design is provided where a chip module is connected to a printed circuit board (PCB) via a land grid array (LGA) on the top surface of the PCB, and where a power supply is connected to the PCB via a second LGA on the bottom surface of the PCB. The stack of the chip module, power supply, and LGA is held in place and compressed with actuation hardware forming an adjustable frame. The package allows field replacibility of either the module, or the PS, and provides the shortest possible wiring distance from the PS to the module leading to higher performance.
Abstract:
An optoelectronic device assembly includes a circuit board and an optoelectronic device disposed on the circuit board and electrically connected with the circuit board. An annular gasket is disposed on the circuit board and surrounds the optoelectronic device. A sealant is disposed over and seals at least a portion of the circuit board and also covers at least an outer annular portion of the annular gasket. The sealant is not disposed over the optoelectronic device. In a method, an optoelectronic device is disposed on a circuit board, the disposing including electrically connecting the optoelectronic device with the circuit board. An annular gasket is disposed on the circuit board to surround the optoelectronic device. The circuit board is sealed with a sealant that also covers at least an outer annular portion of the annular gasket, but does not cover the optoelectronic device.
Abstract:
A coupling structure between a circuit board and a frame member according to the present invention includes: the frame member made of a metal material; and the circuit board set in the frame member and having a land portion soldered to the frame member, in which a solder reinforcing member that is put on the land portion and is solderable is provided at a corner formed by the frame member and the circuit board, and the frame member, the land portion, and the solder reinforcing member are soldered at the corner.
Abstract:
In a communication device, a ground plane disposed on the upper or lower surface of a board or inside the board includes a first ground region disposed on a semiconductor circuit and connected thereto, and a second ground region disposed under an amplifier-and connected thereto. The first ground region and the second ground region do not overlap with each other.
Abstract:
An electronic assembly for use in a downhole tool includes a damming boot deployed about at least one integrated circuit component on a circuit board. The boot is disposed to house the integrated circuit leads and solder joints in a substantially sealed cavity between the circuit board, the integrated circuit body, and an inner surface of the damming boot. The boot is also disposed to support the integrated circuit body and thereby improve the shock and vibration resistance of various electronic assemblies used in downhole tools. The invention also tends to improve the reworkability of downhole electronic assemblies.
Abstract:
An over-molded electronic module (2) includes a frame (10), an electronic assembly (20), and a polymeric body (32). The frame (10) includes a sidewall (14) that defines an opening (12) to provide a position for the electronic assembly (20), and includes an upper face (16) and a lower face (18) opposite the upper face (16) to act as sealing surfaces during over-molding. The polymeric body (32) is formed of a polymeric composition encapsulating both sides of the electronic assembly (20) and a portion of the frame (10).
Abstract:
A connector assembly includes a mother board (12), a mother receptacle (11), a daughter board (22), a daughter receptacle (21), and a connecting device (30) mounted between said two boards. The connecting device includes a number of fixing portions, a shroud (31) defining an insertion slot (313) and engageable with said two boards via the fixing portions, and an extender (32) inserted in the insertion slot. The extender defines a lower opening (322) mating with the mother receptacle and an upper opening (321) mating with the daughter receptacle.
Abstract:
A flexible circuit has contacts for mounting in a socket or card edge connector. The flexible circuit includes integrated circuit devices mounted on both sides of the edge connector contacts. Preferably, the flexible circuit is wrapped about an edge of a rigid substrate and presents contacts on both sides of the substrate for mounting in a socket. Multiple flexible circuits may be overlaid with the same strategy. The flexible circuit may exhibit one or two or more conductive layers, and may have changes in the layered structure or have split layers.
Abstract:
An electronic unit includes a first circuit board having a power semiconductor device and an electrolytic capacitor and a second circuit board having an electronic component to control the power semiconductor device. The second circuit board is arranged perpendicular to the first circuit board and along the surface of the electrolytic capacitor. The electronic unit further includes a connecting member being jointed at one end thereof to the first circuit board and jointed at the other end thereof to the second circuit board for electrical connection between the first and second circuit boards.