Abstract:
A circuit board includes a foil circuit provided on a synthetic resin plate formed by injection molding, made of a copper foil, and having a pattern different for the circuit board. Anchor pins projecting upward are provided on the resin plate and passed through pinholes made in the foil circuit. The foil circuit is positioned and secured to the resin plate. In a required portion of the resin plate, a terminal insertion hole is provided, and a receiving terminal is secured to the required portion of the terminal insertion hole and connected to the foil circuit.
Abstract:
A female circuit board for use with a male circuit board has electrically conductive projections. The female circuit board includes a flexible insulating film. The flexible insulating film includes insertion portions into which the conductive projections of the male circuit board are allowed to be inserted. Each of the insertion portions includes a plurality of slits communicating with each other at the center of each of the insertion portions. The flexible insulating film further includes electrically conduction portions for making contact with the conductive projections to come into conduction with the male circuit board. The conduction portions are disposed around the insertion portions on the surface of the female circuit board facing the male circuit board when the female circuit board is in contact with the male circuit board. The conduction portions conform in shape to the insertion portions.
Abstract:
A method of fabricating packaging for a product comprises forming a plurality of conductive tracks on a sheet of material and forming a physical barrier, such as a hole, for impeding fluid flow between adjacent conductive tracks. The method may further comprise depositing first and second regions conductive fluid onto adjacent first and second conductive tracks either side of the physical barrier and mounting an electronic device having first and second terminals such that the electronic device forms a bridge over the physical barrier and the first ands second terminals contact the first and second conductive adjacent tracks.
Abstract:
A high-density, narrow-pitch, and high-pin-count connecting structure with a very low mounting height is realized at low cost.A flexible circuit 10 has first through holes 15 in a plane of first contact pads 13, the first through holes 15 passing through the flexible circuit 10 in a thickness direction of the flexible circuit 10. A target member 20 has second holes 25 in a plane of second contact pads 23, the second holes 25 passing through the target member 20 in a thickness direction of the target member 20. A connector main body 30 has first protrusions 33 on one surface of a third base 31, the first protrusions 33 corresponding to the first through holes 15 of the flexible circuit 10 and the second holes 25 of the target member 20. The connector main body 30 is pressed against the flexible circuit 10 disposed such that the first contact pads 13 face the second contact pads 23, so that the first protrusions 33 are passed through the first through holes 15 and inserted into the second holes 25, the flexible circuit 10 is mechanically connected to the target member 20, and an electrical connection between the first contact pads 15 and the second contact pads 15 is established by pressure contacting.
Abstract:
A wiring board and method of forming the wiring board. The wiring board includes a first substrate, and a second substrate having a smaller mounting area than a mounting area of the first substrate. A base substrate is laminated between the first substrate and the second substrate such that the first substrate extends beyond an edge of the second substrate, and at least one via formed in at least one of the first substrate or the second substrate. A thickness of a portion of the base substrate that is sandwiched between the first substrate and the second substrate is greater than a thickness of a portion of the base substrate that is not sandwiched between the first substrate and the second substrate.
Abstract:
A flexible printed circuit used for being disposed between a frame and a conductive casing of a liquid crystal module is provided. The frame includes a main plate and a side plate which is connected to a side of the main plate. The flexible printed circuit includes a body and a grounding portion. The body is used for being disposed on the main plate of the frame. The grounding portion extends from the body. The grounding portion is bent to a predetermined angle with respect to the body, so that the grounding portion is disposed on the side plate of the frame. The grounding portion has a metal layer contacting an inner wall of a side plate of the conductive casing. The flexible printed circuit has a hole located at the position where the grounding portion is connected the body.
Abstract:
A circuit board includes a foil circuit provided on a synthetic resin plate formed by injection molding, made of a copper foil, and having a pattern different for the circuit board. Anchor pins projecting upward are provided on the resin plate and passed through pinholes made in the foil circuit. The foil circuit is positioned and secured to the resin plate. In a required portion of the resin plate, a terminal insertion hole is provided, and a receiving terminal is secured to the required portion of the terminal insertion hole and connected to the foil circuit.
Abstract:
Non-volatile memory based computer systems and methods are described. According to one aspect of the invention, at least one non-volatile memory module is coupled to a computer system as main storage. The non-volatile memory module is controlled by a northbridge controller configured to control the non-volatile memory as main memory. The page size of the at least one non-volatile memory module is configured to be the size of one of the cache lines associated with a microprocessor of the computer system. According to another aspect, at least one non-volatile memory module is coupled to a computer system as data read/write buffer of one or more hard disk drives. The non-volatile memory module is controlled by a southbridge controller configured to control the non-volatile memory as an input/out device. The page size of the at least one non-volatile memory module is configured in proportion to characteristics of the hard disk drives.
Abstract:
A multilayer substrate includes an insulating base member having a plurality of resin films, an electric element embedded in the insulating base member, and a spacer. The resin films are made of a thermoplastic resin and stacked and attached to each other. At least one resin film has a through hole for inserting the electric element. The one resin film further has a plurality of protruding members. One protruding member opposes to another one protruding member so that the one and the another one contact and sandwich the electric element. The spacer is arranged between the one resin film and an adjacent resin film and is disposed at a base portion of one of the protruding members.
Abstract:
A lighting arrangement is disclosed with a light module (2) that has at least one first group (22, 22′) of light sources (221, 222, 223) and one second group (22, 22″) of light sources that are arranged spaced apart from each other on a flexible circuit board (21), and with a carrier (1) on which the light module is mounted, and a buffer zone (12) that laterally overlaps with the light module between the first and the second group of light sources. Furthermore, a backlighting device and a display device are disclosed.