Abstract:
The present invention provides a connector configured to electrically connect two connection objects. The connector comprises an elastic member having a surface and a conductive film placed on the surface of the elastic member. The conductive film comprises two contact portions to be brought into contact with the connection objects, respectively, and a connect portion connecting the contact portions. Each of the contact portions comprises projections and a drainage arranged, at least in part, between the projections.
Abstract:
Various methods and apparatus for coupling capacitors to a chip substrate are disclosed. In one aspect, a method of manufacturing is provided that includes forming a mask on a semiconductor chip substrate that has plural conductor pads. The mask has plural openings that expose selected portions of the plural conductor pads. Each of the plural openings has a footprint corresponding to a footprint of a smallest size terminal of a capacitor adapted to be coupled to the semiconductor chip substrate. A conductor material is placed in the plural openings to establish plural capacitor pads.
Abstract:
Provided are vertical transitions which have the high electrical performance and the high shielding properties in the wide frequency band in a multilayer PCB, printed circuit boards with the vertical transitions and semiconductor packages with the printed circuit boards and semiconductor chips. In vertical transitions for a multilayer PCB, a wave guiding channel is a conductor which includes at least more than one of signal vias 201, an assembly of ground vias 202 surrounding the signal via, ground plates from conductor layers of the PCB connected to the ground vias, closed ground striplines 205 connecting the ground vias and power supply layer.
Abstract:
A printed circuit board includes a first layer including a first power portion and a first ground portion isolated from each other, and a second layer including a second power portion and a second ground portion isolated from each other. The second layer is spaced from the first layer. The second ground portion is arranged below the first power portion. The second power portion is arranged below the first ground portion. One portion of the first power portion overlaps one portion of the second power portion, and one portion of the first ground portion overlaps one portion of the second ground portion to provide a zero-intensity electric field between the first layer and the second layer. The first power portion is coupled to the second power portion via a first via. The first ground portion is coupled to the second ground portion via a second via.
Abstract:
A printed circuit board having an embedded chip capacitor is disclosed. According to an embodiment of the present invention, a printed circuit board having an embedded chip capacitor can include a first conductive layer; a second conductive layer, placed away from the first conductive layer; a chip capacitor, placed between the first conductive layer and the second conductive layer and having a second electrode, connected to the second conductive layer; and a via, connecting the first conductive layer to a first electrode of the chip capacitor. With the present invention, a problem mixed signals can be solved in the printed circuit board including an analog circuit and a digital circuit board by using the chip capacitor embedded in the printed circuit board as an electromagnetic bandgap structure. Here, various electrical devices or elements are mounted in the printed circuit board.
Abstract:
The connection structure between wired circuit boards connects a first wired circuit board and a second wired circuit board. The first wired circuit board includes a metal supporting layer, a first insulating layer formed on the metal supporting layer, and a first conductive pattern formed on the first insulating layer and having a first terminal portion. The metal supporting layer is arranged so as not to be opposed to the first terminal portion in a thickness direction. The first terminal portion and the first insulating layer opposed to the first terminal portion in a thickness direction are folded back into a curved shape. The second wired circuit board includes a second insulating layer, and a second conductive pattern formed on the second insulating layer and having a second terminal portion. The first terminal portion and the second terminal portion are electrically connected to each other.
Abstract:
A printer capable of correctly sensing the internal ambient temperature of a printer body with no influence by an electronic component such as a power supply component reaching a high temperature is obtained. This printer comprises a temperature sensor chip for sensing the internal ambient temperature of the printer body, the electronic component and a ground pattern formed on a wiring board for grounding the temperature sensor chip and the electronic component. A portion of the ground pattern connected to the temperature sensor chip is partially formed narrower than another portion of the ground pattern connected to the electronic component.
Abstract:
An electromagnetic bandgap structure and a printed circuit board that can solve a mixed signal problem between an analog circuit and a digital circuit are disclosed. In accordance with an embodiment of the present invention, the electromagnetic bandgap structure can include a first metal layer; a first dielectric layer, stacked in the first metal layer; a metal plate, stacked in the first dielectric layer; a via, connecting the first metal layer to the metal plate; a second dielectric layer, stacked in the metal plate and the first dielectric layer; and a second metal layer, stacked in the second dielectric layer. Here, a hole can be formed on the metal plate. With the present invention, the electromagnetic bandgap structure can lower a noise level more within the same frequency band as compared with other structures having the same size.
Abstract:
An apparatus for balancing power plane pin currents in a printed wiring board (PWB) provides for reduction in pin counts required for power plane (including ground plane) connections and/or reduction in requirements for connector current handling per pin. One or more slots are introduced in the metal layer implementing the power plane that alter the current distribution in the power plane. The per-pin current profile for connector pins connected to the power plane is equalized by tuning the length of the slot(s). The slots may be dashed or made internal to the power plane metal layer to avoid weakening the metal layer for laminated multi-layer PWBs and may be shaped around a connector end when the power plane pin allocation is not uniform at the connector ends. The resulting equalization reduces either pin count required for carrying the power plane current or reduces connector pin current requirements.
Abstract:
A novel method for manufacturing embedded a capacitive stack and a novel capacitive stack apparatus are provided having a capacitive core that serves as a structural substrate on which alternating thin conductive foils and nanopowder-loaded dielectric layers may be added and tested for reliability. This layering and testing allows early fault detection of the thin dielectric layers of the capacitive stack. The capacitive stack may be configured to supply multiple isolated capacitive elements that provide segregated, device-specific decoupling capacitance to one or more electrical components. The capacitive stack may serve as a core substrate on which a plurality of additional signaling layers of a multilayer circuit board may be coupled.