Abstract:
Ultrasensitive, miniaturized, and inexpensive ion and ionizing radiation detection devices are provided. The devices include an insulating substrate, metallic contact pads disposed on a surface of the substrate, and a strip of an ultrathin two-dimensional material having a thickness of one or a few atomic layers. The strip is in contact with the contact pads, and a voltage is applied across the two-dimensional sensor material. Individual ions contacting the two-dimensional material alter the current flowing through the material and are detected. The devices can be used in a network of monitors for high energy ions and ionizing radiation.
Abstract:
The invention provides methods for direct growth of low noise, atomically thin freestanding membranes of two-dimensional monocrystalline or polycrystalline materials, such as transition metal chalcogenides including molybdenum disulfide. The freestanding membranes are directly grown over an aperture by reacting two precursors in a chemical vapor deposition process carried out at atmospheric pressure. Membrane growth is preferentially over apertures in a thin sheet of solid state material. The resulting membranes are one or a few atomic layers thick and essentially free of defects. The membranes are useful for sequencing of biopolymers through nanopores.
Abstract:
The invention provides methods for direct growth of low noise, atomically thin freestanding membranes of two-dimensional monocrystalline or polycrystalline materials, such as transition metal chalcogenides including molybdenum disulfide. The freestanding membranes are directly grown over an aperture by reacting two precursors in a chemical vapor deposition process carried out at atmospheric pressure. Membrane growth is preferentially over apertures in a thin sheet of solid state material. The resulting membranes are one or a few atomic layers thick and essentially free of defects. The membranes are useful for sequencing of biopolymers through nanopores.
Abstract:
Heterocrystals of metal dichalcogenides and Bi2S3, Bi2Se3 or Bi2Te3 are presented, in which the metal dichalcogenides and Bi2S3, Bi2Se3 or Bi2Te3 do not largely retain their independent properties. These heterocrystals exhibit electronic and optical changes, which make them attractive for beyond-silicon electronics and optoelectronics. Particularly, these heterocrystals can be re-configured in a manner that allows bit writing and pattern drawing. Embodiments of these heterocrystals, methods of forming these heterocrystals, methods of reconfiguring the heterocrystals, information storage devices, optoelectronic circuits and photonic crystals are presented.
Abstract:
Inter-allotropic transformations of carbon are provided using moderate conditions including alternating voltage pulses and modest temperature elevation. By controlling the pulse magnitude, small-diameter single-walled carbon nanotubes are transformed into larger-diameter single-walled carbon nanotubes, multi-walled carbon nanotubes of different morphologies, and multi-layered graphene nanoribbons.
Abstract:
Heterocrystals of metal dichalcogenides and Bi2S3, Bi2Se3 or Bi2Te3 are presented, in which the metal dichalcogenides and Bi2S3, Bi2Se3 or Bi2Te3 do not largely retain their independent properties. These heterocrystals exhibit electronic and optical changes, which make them attractive for beyond-silicon electronics and optoelectronics. Particularly, these heterocrystals can be re-configured in a manner that allows bit writing and pattern drawing. Embodiments of these heterocrystals, methods of forming these heterocrystals, methods of reconfiguring the heterocrystals, information storage devices, optoelectronic circuits and photonic crystals are presented.
Abstract:
Devices and methods of the present technology utilize wavelength-dependent transmittance of 2D materials to identify the wavelength of an electromagnetic radiation. A wide range of 2D materials can be used, making possible the use of the technology over a large portion of the electromagnetic spectrum, from gamma rays to the far infrared. When combined with appropriate algorithms and artificial intelligence, the technology can identify the wavelength of one or more monochromatic sources, or can identify color through the use of a training set. When applied in an array format, the technology can provide color imaging or spectral imaging using different regions of the electromagnetic spectrum.
Abstract:
Provided in one embodiment is a method for operating a photodiode device, which device comprises: at least one layer of an n-doped semiconductor material; two portions of a dielectric material separately disposed over separate regions of the at least one layer of the n-doped semiconductor material; at least one monolayer of a carbon-based material disposed between the two portions of dielectric material and over the at least one layer of the n-doped semiconductor material; two terminal electrodes, each electrode disposed in electrical communication with a respective one of the portions of dielectric material; and a gate electrode in electrical communication with the at least one layer of the n-doped semiconductor material. The method comprises: applying a voltage across the gate electrode and one of the two terminal electrodes; and exposing the photodiode device to electromagnetic radiation.
Abstract:
Heterojunctions of single-walled carbon nanotubes and p-doped silicon produce a photocurrent when irradiated with visible light under reverse bias conditions. In optoelectronic devices utilizing the heterojunctions, the output current can be controlled completely by both optical and electrical inputs. The heterojunctions provide a platform for heterogeneous optoelectronic logic elements with high voltage-switchable photocurrent, photo-voltage responsivity, electrical ON/OFF ratio, and optical ON/OFF ratio. The devices are combined to make switches, logic elements, and imaging sensors. An assembly of 250,000 sensor elements on a centimeter-scale wafer is also provided, with each sensor element having a heterojunction of single-walled carbon nanotubes and p-doped silicon, and producing a current dependent on both the optical and the electrical input.
Abstract:
2D heterostructures comprising Bi2Se3/MoS2, Bi2Se3/MoSe2, Bi2Se3/WS2, Bi2Se3/MoSe2. 2xS2x, or mixtures thereof in which oxygen is intercalated between the layers at selected positions provide high density storage devices, sensors, and display devices. The properties of the 2D heterostructures can be configured utilizing abeam of electromagnetic waves or particles in an oxygen controlled atmosphere.