Abstract:
로봇이 개시된다. 로봇은, 적어도 하나의 센서, 구동부 및 프로세서를 포함하며, 프로세서는, 적어도 하나의 명령어를 실행함으로써, 로봇이 주행하는 동안 적어도 하나의 센서에 의해 획득된 센싱 데이터에 기초하여 오브젝트의 특성 정보를 획득하고, 획득된 오브젝트의 특성 정보에 기초하여 오브젝트까지의 거리에 따른 속도 프로파일 정보를 획득하고, 획득된 속도 프로파일 정보에 기초하여 영역 별 속도 정보를 포함하는 속도 맵을 획득하고, 획득된 속도 맵에 기초하여 식별된 이동 경로에 기초하여 구동부를 제어한다.
Abstract:
로봇이 개시된다. 로봇은, 적어도 하나의 센서, 구동부, 적어도 하나의 명령을 저장하는 메모리 및 프로세서를 포함하며, 프로세서는, 적어도 하나의 명령어를 실행함으로써, 로봇의 주행 공간을 복수의 서브 공간으로 식별하고, 로봇이 주행하는 동안 적어도 하나의 센서에 의해 획득된 센싱 데이터에 기초하여 복수의 서브 공간 각각에 대응되는 주행성 정보를 획득하고, 획득된 주행성 정보에 기초하여 획득된 주행 맵에 기초하여 복수의 서브 공간을 각각을 통과하기 위한 소요 시간에 대한 정보를 획득하고, 획득된 소요 시간 정보에 기초하여 로봇의 이동 경로를 식별하고, 식별된 이동 경로에 기초하여 구동부를 제어하며, 주행성 정보는, 서브 공간과 관련된 영역 정보, 타 로봇 관련 정보 또는 동적 오브젝트 관련 정보 중 적어도 하나를 포함한다.
Abstract:
PURPOSE: An etching jig and a chemical lift-off apparatus including the same are provided to improve throughput by preventing etching in an unnecessary region. CONSTITUTION: A frame body receives a semiconductor structure(10). An etching hole(121) is formed in an upper part of the frame body. The frame body exposes the upper part of a substrate. A sealing member(150) is arranged in the frame body. The sealing member encapsulates a semiconductor thin film and a support layer.
Abstract:
PURPOSE: A light emitting device which uses a connection structure and a manufacturing method thereof are provided to connect each cell through the connection structure of a bridge, thereby providing the light emitting device with a structure in which electrical connections of the cells are integrated. CONSTITUTION: A light emitting area comprises an n-type clad layer(14), an active layer(15), and a p-type clad layer(16). A p-type electrode(17) is arranged on the p-type clad layer. A contact hole is arranged by penetrating the p-type electrode, p-type clad layer, and active layer. A passivation layer(18) is arranged in an inner wall of the contact hole and the surface of the p-type electrode. An n-type electrode(19) is arranged while being touched with the n-type clad layer within the contact hole.
Abstract:
An apparatus for fabricating a semiconductor device is provided to improve chamber cleaning efficiency by using an in-situ cleaning unit and a remote plasma cleaning unit in a cleaning a chamber. A space for performing a fabricating process is defined in a chamber(10). A chuck(14) is positioned in the lower part of the space to support a substrate. A shower head supplies process gas to the substrate supported by the chuck, positioned in the upper part of the space. The chamber is cleaned by a cleaning member including an in-situ cleaning unit(20) and a remote plasma cleaning unit(30). The in-situ cleaning unit generates plasma from the cleaning gas supplied to the inside of the chamber to clean the chamber. The remote plasma cleaning unit generates plasma outside the chamber and supplies the plasma to the inside of the chamber. The remote plasma cleaning unit can supply plasma from the lateral direction of the chamber to the inside of the chamber horizontally.
Abstract:
PURPOSE: A light emitting apparatus and a manufacturing method thereof are provided to improve the light extraction efficiency by reducing the light absorption of a silicon substrate by comprising a reflective buffer layer including a distributed brag reflection layer. CONSTITUTION: A metallic buffer layer(132) is formed on a silicon substrate(110). A patterned distributed Brag reflector layer(134) is formed on the metallic buffer layer. The metallic buffer layer is patterned in the same pattern as the distributed Bragg reflector layer. An XY material layer(136) is formed on the patterned distributed Bragg reflector layer.
Abstract:
PURPOSE: A substrate structure and a manufacturing method of the same are provided to prevent Si from being melt-back through Ga by oxidizing the surface of a substrate and a pattern region after forming the pattern region. CONSTITUTION: A substrate structure comprises a substrate(20) and a buffer layer(22) The buffer layer is formed on the substrate by a certain pattern. A buffer layer is supported by a substrate protrusion which is formed after the surface of the substrate is etched. The bottom of a buffer layer which is not contacted with the substrate protrusion is exposed to outside. A nitride semiconductor layer is formed through lateral growth which is rapider vertical growth.