Abstract:
Method of measuring a height profile of one or more substrates is provided comprising measuring a first height profile of one or more fields on a substrate using a first sensor arrangement, the first height profile being the sum of a first interfield part and a first intrafield part, measuring a second height profile of one or more further fields on the substrate or on a further substrate using a second sensor arrangement, the second height profile being the sum of a second interfield part and a second intrafield part, determining from the measurements with the first sensor arrangement an average first intrafield part, and determining the height profile of the further fields from the second interfield part and the average first intrafield part thereby correcting the measurements of the second sensor arrangement.
Abstract:
A substrate has first and second target structures formed thereon by a lithographic process, lithographic process comprising at least two lithographic steps. Each target structure has two-dimensional periodic structure formed in a single material layer, wherein, in the first target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a first bias amount, and, in the second target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a second bias amount. An angle- resolved scatter spectrum of the first target structure and an angle-resolved scatter spectrum of the second target structure is obtained, and a measurement of a parameter of a lithographic process is derived from the measurements using asymmetry found in the scatter spectra of the first and second target structures.
Abstract:
Disclosed is a method for assigning features into at least first features and second features, said first features being for at least one first patterning device configured for use in a lithographic process to form corresponding first structures on a substrate and second features being for at least one second patterning device configured for use in a lithographic process to form corresponding second structures on a substrate, wherein said method comprises assigning said features into said first features and said second features based on a patterning characteristic of the features.
Abstract:
A method of determining overlay of a patterning process, the method including: obtaining a detected representation of radiation redirected by one or more physical instances of a unit cell, wherein the unit cell has geometric symmetry at a nominal value of overlay and wherein the detected representation of the radiation was obtained by illuminating a substrate with a radiation beam such that a beam spot on the substrate was filled with the one or more physical instances of the unit cell; and determining, from optical characteristic values from the detected radiation representation, a value of a first overlay for the unit cell separately from a second overlay for the unit cell that is also obtainable from the same optical characteristic values, wherein the first overlay is in a different direction than the second overlay or between a different combination of parts of the unit cell than the second overlay.
Abstract:
A method of determining overlay of a patterning process, the method including: illuminating a substrate with a radiation beam such that a beam spot on the substrate is filled with one or more physical instances of a unit cell, the unit cell having geometric symmetry at a nominal value of overlay; detecting primarily zeroth order radiation redirected by the one or more physical instances of the unit cell using a detector; and determining, by a hardware computer system, a non-nominal value of overlay of the unit cell from values of an optical characteristic of the detected radiation.
Abstract:
Disclosed is a method of determining a process window within a process space comprising obtaining (610) contour data (615) relating to features to be provided to a substrate (625) across a plurality of layers, for each of a plurality of process conditions (600) associated with providing the features across said plurality of layers and failure mode data (650) describing constraints on the contour data across the plurality of layers. The failure mode data is applied to the contour data to determine (640) a failure count for each process condition; and the process window is determined (655) by associating each process condition to its corresponding failure count. Also disclosed is a method of determining an actuation constrained subspace of the process window based on actuation constraints imposed by the plurality of actuators.
Abstract:
Disclosed is a method of measuring focus performance of a lithographic apparatus, and corresponding patterning device and lithographic apparatus. The method comprises using the lithographic apparatus to print one or more first printed structures and second printed structures. The first printed structures are printed by illumination having a first non-telecentricity and the second printed structures being printed by illumination having a second non-telecentricity, different to said first non-telecentricity. A focus dependent parameter related to a focus- dependent positional shift between the first printed structures and the second printed structures on said substrate is measured and a measurement of focus performance based at least in part on the focus dependent parameter is derived therefrom.
Abstract:
A substrate comprising a plurality of features for use in measuring a parameter of a device manufacturing process and associated methods and apparatus. The measurement is by illumination of the features with measurement radiation from an optical apparatus and detecting a signal arising from interaction between the measurement radiation and the features, wherein the plurality of features comprise first features distributed in a periodic fashion at a first pitch, and second features distributed in a periodic fashion at a second pitch, and wherein the first pitch and second pitch are such that a combined pitch of the first and second features is constant irrespective of the presence of pitch walk in the plurality of features.
Abstract:
Disclosed is a method of, and associated apparatus for, determining focus corrections for a lithographic projection apparatus. The method comprises: exposing a plurality of global correction fields on a test substrate, each comprising a plurality of global correction marks, and each being exposed with a tilted focus offset across it; measuring a focus dependent characteristic for each of the plurality of global correction marks to determine interfield focus variation information; and calculating interfield focus corrections from said interfield focus variation information.
Abstract:
2021P00202WO 19 Confidential ABSTRACT Disclosed is a method of determining a performance parameter distribution and/or associated quantile function. The method comprises obtaining a quantile function prediction model operable to predict a quantile value for a substrate position and given quantile probability such that the predicted quantile values vary monotonically as a function of quantile probability and using the trained quantile 5 function prediction model to predict quantile values for a plurality of different quantile probabilities for one or more locations on the substrate.