Abstract:
PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon carrier, having a conductive through-via for achieving the high yield manufacturing of a silicon carrier with low defect density. SOLUTION: This silicon carrier 43 is formed with via diameters, ranging from one micron to 10 microns, with respect to vertical thickness ranging from 10 microns or smallers to 300 microns or larger. Thus, it is possible to manufacture a silicon carrier which is resistant to a thermal mechanical stresses, when manufacturing, and significant minimization of its thermal mechanical movement on a via side wall interface among silicon materials, insulator materials, linear materials and conductive materials is effected. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a solar cell formed by electrodeposition of a semiconductor compound. SOLUTION: The invention relates to methods for forming photovoltaic devices, methods for forming semiconductor compounds, photovoltaic device and chemical solutions. For example, a method for forming a photovoltaic device comprising a semiconductor layer includes forming the semiconductor layer by electrodeposition from an electrolyte solution. The electrolyte solution includes copper, indium, gallium, selenous acid (H 2 SeO 3 ) and water. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
Technical solutions are described for implementing an optogenetics treatment using a probe and probe controller are described. A probe controller controls a probe to perform the method that includes emitting, by a light source of the probe, the probe is embeddable in a tissue, a light wave to interact with a corresponding chemical in one or more cells in the tissue. The method further includes capturing, by a sensor of the probe, a spectroscopy of the light wave interacting with the corresponding chemical. The method further includes sending, by the probe, the spectroscopy to an analysis system. The method further includes receiving, by the probe, from the analysis system, adjusted parameters for the light source, and adjusting, by a controller of the probe, settings of the light source according to the received adjusted parameters to emit a different light wave to interact with the corresponding chemical.
Abstract:
A metal plating apparatus is described which includes a compressible member having a conductive surface covering substantially all of the surface of the substrate to be plated. The plating current is thereby transmitted over a wide area of the substrate, rather than a few localized contact points. The compressible member is porous so as to absorb the plating solution and transmit the plating solution to the substrate. The wafer and compressible member may rotate with respect to each other. The compressible member may be at cathode potential or may be a passive circuit element.
Abstract:
Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
Abstract:
Antibacterial coatings and methods of making the antibacterial coatings are described herein. A first branched polyethylenimine (BPEI) layer is formed and a first glyoxal layer is formed on a surface of the BPEI layer. The first BPEI layer and the first glyoxal layer are cured to form a crosslinked BPEI coating. The first BPEI layer can be modified with superhydrophobic moieties, superhydrophilic moieties, or negatively charged moieties to increase the antifouling characteristics of the coating. The first BPEI layer can be modified with contact-killing bactericidal moieties to increase the bactericidal characteristics of the coating.
Abstract:
Probes include a probe body configured to penetrate biological tissue. High-efficiency light sources are positioned within the probe body. Each high-efficiency light source has a sufficiently intense light output to trigger a light-sensitive reaction in neighboring tissues and has a sufficiently low power output such that a combined heat output of multiple light sources does cause a disruptive temperature increase in the neighboring tissues.
Abstract:
A magnetic laminating structure includes alternating layers of a magnetic material (112) and a multilayered insulating material, wherein the multilayered insulating material is intermediate adjacent magnetic material layers and comprises a first insulating layer (114A) abutting at least on additional insulating layer (114B), and wherein the first insulating layer (114A) and the at least one additional insulating layer (114B) comprise different dielectric materials and/or are formed by a different deposition process.
Abstract:
A magnetic laminating structure includes alternating layers of a magnetic material (112) and a multilayered insulating material, wherein the multilayered insulating material is intermediate adjacent magnetic material layers and comprises a first insulating layer (114A) abutting at least on additional insulating layer (114B), and wherein the first insulating layer (114A) and the at least one additional insulating layer (114B) comprise different dielectric materials and/or are formed by a different deposition process.
Abstract:
Probes include a probe body configured to penetrate biological tissue. High-efficiency light sources are positioned within the probe body. Each high-efficiency light source has a sufficiently intense light output to trigger a light- sensitive reaction in neighboring tissues and has a sufficiently low power output such that a combined heat output of multiple light sources does cause a disruptive temperature increase in the neighboring tissues.