Abstract:
Methods forming a trench region of a trench capacitor structure having increase surface area are provided. One method includes the steps of forming a discontinuous polysilicon layer (43) on exposed walls of a lower trench region, the discontinuous polysilicon layer having gaps (44) therein which expose portions of said substrate; oxidizing the lower trench region such that the exposed portions of said substrate provided by the gaps in the discontinuous polysilicon layer are oxidized into oxide material which forms a smooth and wavy layer with the discontinuous polysilicon layer; and etching said oxide material so as to form smooth hemispherical grooves (46) on the walls of the trench region.
Abstract:
A process for fabricating a single-sided semiconductor deep trench structure filled with polysilicon trench fill material includes the following steps. Form a thin film, silicon nitride, barrier layer over the trench fill material. Deposit a thin film of an amorphous silicon masking layer over the barrier layer. Perform an angled implant into portions of the amorphous silicon masking layer which are not in the shadow of the deep trench. Strip the undoped portions of the amorphous silicon masking layer from the deep trench. Then strip the newly exposed portions of barrier layer exposing a part of the trench fill polysilicon surface and leaving the doped, remainder of the amorphous silicon masking layer exposed. Counterdope the exposed part of the trench fill material. Oxidize exposed portions of the polysilicon trench fill material, and then strip the remainder of the masking layer.
Abstract:
A process for fabricating a gate oxide of a vertical transistor. In a first step, a trench is formed in a substrate, the trench extending from a top surface of the substrate and having a trench bottom and a trench side wall. The trench side wall comprises a (100) crystal plane and a (110) crystal plane. Next, a sacrificial layer having a uniform thickness is formed on the trench side wall. Following formation of the sacrificial layer, nitrogen ions are implanted through the sacrificial layer such that the nitrogen ions are implanted into the (110) crystal plane of the trench side wall, but not into the (100) crystal plane of the trench side wall. The sacrificial layer is then removed and the trench side wall is oxidized to form the gate oxide.
Abstract:
A process for providing an aqueous back-end-of-line (BEOL) clean with feed-back control to monitor the active component of HF in the clean, for a wiring/interconnect of a reactive ion etched semiconductor device, comprising: subjecting the reactive ion etched semiconductor device to a post metal RIE clean using an etchant composition comprising about 0.01 to about 15 percent by weight of sulfuric acid; about 0.1 to about 100 ppm of a fluoride containing compound; and a member selected from the group consisting of about 0.01 to about 20 percent by weight of hydrogen peroxide or about 1 to about 30 ppm of ozone, comprising: a) mixing water, sulfuric acid and hydrogen peroxide in a mixing tank; b) mixing HF directly into the mixing tank or adding HF into a separate vessel for wafer processing, either before, during or after the mixture water, sulfuric acid and hydrogen peroxide as a mixture is transported to the separate tank for wafer processing; c) taking a sample comprising HF from the mixing tank or HF from the wafer processing tank and sending the sample through a feedback loop; d) comparing the sample to a standard dilute solution of HF to obtain a value of HF concentration in the sample; e) inputting the value to a tank tool recipe control to cause any needed adjustment in concentration of HF to a predetermined range, either in the mixing tank or the wafer processing vessel; and f) subjecting the wiring/interconnect of the semiconductor device to etching by the etchant composition to remove sidewall polymer, polymer rails and via residue without etching conductive materials during removal of sidewall polymer, polymer rails, and via residue.
Abstract:
PROBLEM TO BE SOLVED: To make the thickness of an oxide layer uniform by reducing crystal direction dependency as to a method for forming an oxide layer on the sidewall of a trench formed in a substrate. SOLUTION: This method has a stage, where the trench 200 is formed in the substrate 24, a stage where a nitride interface layer 1250 covering at least part of the sidewall 32 of the trench 200 is formed, a stage where an amorphous layer covering the nitride interface layer 1250 is formed, and a stage where an oxide layer 160 is formed by oxidizing the amorphous layer. Here, a separate collar 130 is arranged, by covering a separate collar nitride interface barrier layer 125 provided between a separate collar oxide layer and the trench sidewall 32, and a vertical gate oxide film 160 is arranged, covering the gate nitride interface layer 1250 provided between the gate oxide layer and trench sidewall 32.
Abstract:
A process for forming dual gate oxides of improved oxide thickness uniformity for use in high performance DRAM systems or logic circuits, comprising:a) growing a sacrificial oxide layer on a substrate;b) implanting a dopant through the sacrificial oxide layer;c) implanting a first dosage of nitrogen ions in the absence of a photoresist to form a nitrided silicon layer; d) subjecting the substrate to a rapid thermal anneal for a sufficient time and at a sufficient temperature to allow nitrogen to diffuse to the silicon/oxide interface;e) masking the substrate with a photoresist to define the locations of the thin oxides of the dual gate oxide;f) implanting a second dosage of nitrogen ions through the photoresist;g) stripping the photoresist and the sacrificial oxide layers; and h) growing by oxidation gate oxide layers characterized by improved oxide thickness uniformity in the nitrogen ion implanted areas in the thin and thick oxides.
Abstract:
An improved capacitor is formed by a process where an improved node dielectric layer is formed with an improved dielectric constant by performing an Free Radical Enhanced Rapid Thermal Oxidation (FRE RTO) step during formation of the node dielectric layer. Use of an FRE RTO step instead of the conventional furnace oxidation step produces a cleaner oxide with a higher dielectric constant and higher capacitance. Other specific embodiments of the invention include improved node dielectric layer by one or more additional nitridation steps, done by either Remote Plasma Nitridation (RPN), Rapid Thermal Nitridation (RTN), Decoupled Plasma Nitridation (DPN) or other nitridation method; selective oxidation; use of a metal layer rather than a SiN layer as the dielectric base; and selective oxidation of the metal layer.
Abstract:
Disclosed is a method of processing a semiconductor gate structure on a semiconductor wafer, the method comprising providing a semiconductor structure with an active device area capped with a pad oxide layer bounded by one or more isolation trenches, providing a sacrificial oxide layer by thickening said pad oxide layer to a desired oxide thickness, in using said thickened pad oxide layer as said sacrificial oxide layer for device implantation, stripping said sacrificial pad oxide layer after use, and capping said semiconductor gate with a final gate oxide layer.