Abstract:
A bond pad connector to be disposed on a stretchable substrate and adapted to secure an electronic component thereon. The bond pad connector includes two spaced apart bond pads that are adapted to be disposed on the stretchable substrate to face each other. Each of the two bond pads is adapted to be connected to a respective conductive trace and includes: a stress relieve component that is adapted to be connected to the conductive trace, the stress relieve component being formed with a central hole; and an extension component extending from the stress relieve component and opposite to the conductive trace. The electronic component is secured onto the bond pad connector by attaching the electronic component to, for each of the bond pads, at least a part of the extension component.
Abstract:
A printed wiring board includes an interlayer resin insulating layer including resin and inorganic particles, a via conductor formed through the insulating layer, a first conductor layer formed on the first surface of the insulating layer and including a land portion of the via conductor on the first surface, and a second conductor layer formed on second surface of the insulating layer and connected to bottom of the via conductor. The bottom of the via conductor has diameter of 20 to 35 μm, the first conductor layer has thickness of 3 to 12 μm, the insulating layer has thickness of 1 to 15 μm, the second conductor layer has thickness of 1 to 12 μm, and the second conductor and insulating layers are formed such that T1/T2 is 0.06 to 7.00 where T1 represents the thickness of the second conductor layer, and T2 represents the thickness of the insulating layer.
Abstract:
The method comprises providing a semiconductor substrate, which has a main surface and an opposite further main surface, arranging a contact pad above the further main surface, forming a through-substrate via from the main surface to the further main surface at a distance from the contact pad and, by the same method step together with the through-substrate via, forming a further through-substrate via above the contact pad, arranging a hollow metal via layer in the through-substrate via and, by the same method step together with the metal via layer, arranging a further metal via layer in the further through-substrate via, the further metal via layer contacting the contact pad, and removing a bottom portion of the metal via layer to form an optical via laterally surrounded by the metal via layer.
Abstract:
A circuit board, a display device including the same, and a method of manufacturing a circuit board are provided. A circuit board includes a base substrate, a wiring line provided on the base substrate, a passivation layer provided on the wiring line, an elastic bump provided on the passivation layer, and a conductive layer provided on the elastic bump. The passivation layer includes a first opening and a second opening that expose a partial region of the wiring line, and the second opening is arranged in a region adjacent to the first opening.
Abstract:
There is provided a wiring board capable of strengthening the bonding between an external terminal and a wiring of an external circuit board. A wiring board includes an insulating substrate having two main surfaces facing each other, side surfaces connecting to the two main surfaces and concave portions concave from the side surfaces and connecting to at least one of the two main surfaces; and external terminals disposed from one of the main surfaces to inner surfaces of the respective concave portions, each of the external terminals having a convex-shaped section disposed on one main surface side along each of the concave portions.
Abstract:
Provided is an illumination device that includes a light emitting device having a first electrode and a second electrode and a mounting substrate including a first wiring pattern and a second wiring pattern. The first wiring pattern and the second wiring pattern face and are bonded to the first electrode and the second electrode, respectively, through a bonding material. The second electrode and the second wiring pattern are configured to be at least partially overlapped with each other in a plan view irrespective of an orientation of the light emitting device, under condition that the first electrode and the first wiring pattern are at least partially overlapped with each other in the plan view.
Abstract:
A circuit board has a first side and a second side opposite thereto. The board includes vias extending through the substrate from the first side to the second side, and via contact pads on the second side, each of which surrounds a corresponding via. The board includes a pair of surface mount contact pads on the second side. Each surface mount contact pad has a surface area and edges, each of which can have a shape to maximize the surface area while maintaining predetermined minimum separation distances. Each edge except one or more edges that are opposite another surface mount contact pad have a curved shape, and each edge opposite another surface mount contact pad have a linear shape. Curved edges adjacently opposite corresponding via contact pads can have curved shapes can have concave shapes, and curved edges not adjacently opposite via contact pads can have convex shapes.
Abstract:
Disclosed is an attenuation reduction structure for high-frequency connection pads of a circuit board with an insertion component. The circuit board includes at least one pair of differential mode signal lines formed thereon. A substrate has upper and lower surfaces respectively provided with at least one pair of upper connection pads and lower connection pads. A first metal layer is formed on the lower surface of the substrate. The first metal layer includes an attenuation reduction grounding pattern structure. The attenuation reduction grounding pattern structure includes a hollow area and at least one protruded portion. The protruded portion extends from the first metal layer in a direction toward the lower connection pads.
Abstract:
A wiring substrate includes a block with substrates laid out in an array. The block includes corners and a plan view center. Each substrate includes a substrate body. Pads are formed on the substrate body. Each pad includes a pad surface. The pads of the substrates include first pads, which are the pads of one of the substrates located in at least one of the corners of the block. The pad surface of each of the first pads includes a first axis extending from the first pad toward the plan view center of the block. The pad surface of each of the first pads has a first length along the corresponding first axis and a second length along a second axis, which is orthogonal to the first axis. The first length is longer than the second length.
Abstract:
There is provided a wiring board capable of strengthening the bonding between an external terminal and a wiring of an external circuit board. A wiring board includes an insulating substrate having two main surfaces facing each other, side surfaces connecting to the two main surfaces and concave portions concave from the side surfaces and connecting to at least one of the two main surfaces; and external terminals disposed from one of the main surfaces to inner surfaces of the respective concave portions, each of the external terminals having a convex-shaped section disposed on one main surface side along each of the concave portions.