Abstract:
PROBLEM TO BE SOLVED: To provide a method of forming a gate electrode that avoids dielectric layer undercut during a silicide precleaning step. SOLUTION: A patterned gate stack includes a gate dielectric below a conductor having vertical sidewalls, and a dielectric layer is formed over the patterned gate stack and substrate surfaces. Nitride spacers are formed overlying the dielectric layer at each vertical sidewall. The dielectric layer on the substrate surface is removed using an etch process such that a portion of the dielectric layer underlying each spacer remains. Then, a nitride layer is deposited over the entire sample and subsequently removed by an etch process such that only a portion of the nitride film ("plug") remains. The plug seals and encapsulates the dielectric layer underlying the each spacer, thus preventing the dielectric material from being undercut during the subsequent silicide precleaning process. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To mount a body contact on a semiconductor-on-insulator device, thereby reducing parasitic capacitance in the device. SOLUTION: A substrate includes a semiconductor layer arranged so as to be covered on an insulating layer. The semiconductor layer includes the substrate including a semiconductor body and an separation region existing around the outer periphery of the semiconductor body, and a gate structure covered on the semiconductor layer of the substrate. A method for manufacturing a semiconductor device is provided. The semiconductor device includes the gate structure existing on a first part of an upper face of the semiconductor body and a silicide body contact directly physically brought into contact with a second part of the semiconductor body separated from the first part of the semiconductor body by a non-silicide semiconductor region. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a high-quality, high-K dielectric material for an integrated circuit. SOLUTION: A method includes steps of: forming a material on a substrate; and patterning the material and removing a portion of the material to expose the portion of the substrate underlying the portion of the material. The method further includes a step of performing an oxidation process to form oxide layers over the exposed portion of the substrate and an interface between the material and the substrate. A circuit includes a non-critical device and an oxide formed as a portion of this non-critical device. A high-K dielectric material is formed over a substrate as a portion of the critical device within the circuit. An oxide-based interface is provided between the high-K dielectric material and the underlying substrate. A second method forms a nitride or oxynitride as a starting material. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
A structure, a FET, a method of making the structure and of making the FET. The structure including: a silicon layer (105; Fig. 5) on a buried oxide (BOX) layer (115) of a silicon-on-insulator substrate (100); a trench in the silicon layer extending from a top surface of the silicon layer into the silicon layer, the trench not extending to the BOX layer (160, 165, and 170), a doped region (155) in the silicon layer between and abutting the BOX layer and a bottom of the trench, the first doped region doped to a first dopant concentration; a first epitaxial layer (160), doped to a second dopant concentration, in a bottom of the trench; a second epitaxial layer (165), doped to a third dopant concentration, on the first epitaxial layer in the trench; and wherein the third dopant concentration is greater than the first and second dopant concentrations and the first dopant concentration is greater than the second dopant concentration.
Abstract:
The present invention provides a semiconductor device having dual nitride liners, which provide an increased transverse stress state for at least one FET (300) and methods for the manufacture of such a device. A first aspect of the invention provides a method for use in the manufacture of a semiconductor device comprising the steps of applying a first silicon nitride liner (360) to the device and applying a second silicon nitride liner (370) adjacent the fast silicon nitride liner, wherein at least one of the first and second silicon nitride liners induces a transverse stress in a silicon channel (330) beneath at least one of the first and second silicon nitride liner.
Abstract:
Verfahren zum Fertigen von Transistoreinheiten, das aufweist: Bereitstellen einer Siliciumschicht, die eine Schicht eines Abschirmoxids aufweist, die auf einer oberen Fläche ausgebildet Ist; Aufbringen einer ersten Maskierungsschicht in einer Weise, dass ein erster Abschnitt der Abschirmoxidschicht unbedeckt bleibt; Implantieren von Kohlenstoff in die Siliciumschicht durch den unbedeckten ersten Abschnitt der Abschirmoxidschicht, um ein erstes mit Kohlenstoff implantiertes Volumen der Siliciumschicht mit einer ersten Kohlenstoffkonzentration auszubilden; Entfernen der ersten Maskierungsschicht; Aufbringen einer zweiten Maskierungsschicht in einer Weise, dass ein zweiter Abschnitt der Abschirmoxidschicht unbedeckt bleibt; Implantieren von Kohlenstoff in die Siliciumschicht durch den unbedeckten zweiten Abschnitt der Abschirmoxidschicht, um ein zweites mit Kohlenstoff implantiertes Volumen der Siliciumschicht auszubilden, das eine zweite Kohlenstoffkonzentration aufweist, die sich von der ersten Kohlenstoffkonzentration unterscheidet; Entfernen der zweiten Maskierungsschicht; und ...
Abstract:
Disclosed is an SOI device on a bulk silicon layer which has an FET region, a body contact region and an STI region. The FET region is made of an SOI layer and an overlying gate. The STI region includes a first STI layer separating the SOI device from an adjacent SOI device. The body contact region includes an extension of the SOI layer, a second STI layer on the extension and a body contact in contact with the extension. The first and second STI layers are contiguous and of different thicknesses so as to form a split level STI.
Abstract:
Disclosed is an SOI device on a bulk silicon layer which has an FET region, a body contact region and an STI region. The FET region is made of an SOI layer and an overlying gate. The STI region includes a first STI layer separating the SOI device from an adjacent SOI device. The body contact region includes an extension of the SOI layer, a second STI layer on the extension and a body contact in contact with the extension. The first and second STI layers are contiguous and of different thicknesses so as to form a split level STI.
Abstract:
Eine Struktur, ein FET, ein Verfahren zum Herstellen der Struktur und zum Herstellen des FET. Die Struktur beinhaltet: eine Siliciumschicht (105; 5) auf einer vergrabenen Oxid(BOX)-Schicht (115) eines Silicium-auf-Isolator-Substrats (100); einen Graben in der Siliciumschicht, der sich von einer Oberseite der Siliciumschicht in die Siliciumschicht hinein erstreckt, wobei sich der Graben nicht bis zu der BOX-Schicht (160, 165, und 170) erstreckt, einen dotierten Bereich (155) in der Siliciumschicht zwischen der BOX-Schicht und einem Boden des Grabens und an diese angrenzend, wobei der erste dotierte Bereich bis zu einer ersten Dotierstoffkonzentration dotiert ist; eine erste epitaxiale Schicht (160) in einem Boden des Grabens, die bis zu einer zweiten Dotierstoffkonzentration dotiert ist; eine zweite epitaxiale Schicht (165) auf der ersten epitaxialen Schicht in dem Graben, die bis zu einer dritten Dotierstoffkonzentration dotiert ist; und wobei die dritte Dotierstoffkonzentration höher als die erste und zweite Dotierstoffkonzentration ist und die erste Dotierstoffkonzentration höher als die zweite Dotierstoffkonzentration ist.
Abstract:
Non-planar semiconductor devices are provided that include at least one semiconductor nanowire 18" suspended above a semiconductor oxide layer (26) that is present on a first portion (100) of a bulk semiconductor substrate. An end segment of the at least one semiconductor nanowire is attached to a first semiconductor pad region (20A) and another end segment of the at least one semiconductor nanowire is attached to a second semiconductor pad region (20B). The first and second pad regions are located above and are in direct contact with a second portion (102) of the bulk semiconductor substrate which is vertically offsets from the first portion (100). The structure further includes a gate (27) surrounding a central portion (18C) of the at least one semiconductor nanowire, a source region (40, 50A) located on a first side of the gate, and a drain region (40', 50B) located on a second side of the gate which is opposite the first side of the gate.