Abstract:
A phase change memory (20) has an array (1) formed by a plurality of cells (2), each including a memory element (3) of calcogenic material and a selection element (4) connected in series to the memory element; a plurality of address lines (11) connected to the cells; a write stage (24) and a reading stage (25) connected to the array. The write stage (24) is formed by current generators (45), which supply preset currents to the selected cells (2) so as to modify the resistance of the memory element (3). Reading takes place in voltage, by appropriately biasing the selected cell and comparing the current flowing therein with a reference value.
Abstract:
The phase-change nonvolatile memory array (8) is formed by a plurality of memory cells (10, 10') extending in a first and in a second direction orthogonal to each other. A plurality of column-selection lines (11) extend parallel to the first direction. A plurality of word-selection lines (12) extend parallel to the second direction. Each memory cell (10, 10') includes a PCM storage element (15) and a selection transistor (16). A first terminal of the selection transistor is connected to a first terminal of the PCM storage element, and the control terminal of the selection transistor is connected to a respective word-selection line (12). A second terminal of the PCM storage element (15) is connected to a respective column-selection line (11), and a second terminal of the selection transistor (16) is connected to a reference-potential region (18) while reading and programming the memory cells (10, 10').
Abstract:
A nonvolatile memory device (1') is described comprising a memory array (2), a row decoder (3) and a column decoder (4) for addressing the memory cells (7) of the memory array (2), and a biasing stage (13,19) for biasing the drain terminal of the addressed memory cell (7). The biasing stage (13,19) is coupled between the column decoder (4) and the memory array (2) and comprises a biasing transistor (13) having a drain terminal connected to the column decoder (4), a source terminal connected to the drain terminal of the addressed memory cell (7), and a gate terminal receiving a driving signal of a logic type, the logic levels whereof are defined by precise and stable voltages and are generated by a first driving circuit (19) formed by a driving stage (20) and a buffer (21), cascade-connected.
Abstract:
A page buffer ( 130 ) for an electrically programmable memory including a plurality of memory cells ( 110 ) forming a plurality of memory pages, the page buffer comprising at least one register ( 130m,130c ) for at least temporarily storing data read from or to be written into the memory cells of a selected memory page of said plurality, the at least one register comprising a plurality of latches ( 230m ), each latch being operatively associated with at least one respective signal line ( BLe,BLo,I/O-LINE ) transporting the data bit temporarily stored in the latch. A buffer element ( BUF ) is provided for decoupling an output of the latch from the respective signal line, the latch using the respective buffer element for driving the signal line according to the data bit stored therein.
Abstract:
A nonvolatile memory device (10'; 10") is described comprising a memory array (11), a row decoder (12) and a column selector (13) for addressing the memory cells (16) of the memory array (11), and a biasing stage (22; 36, 28) for biasing the array access device terminal of the addressed memory cell (16). The biasing stage (22; 36 28) is arranged between the column selector (13) and the memory array (11) and comprises a biasing transistor (22; 36) having a drain terminal connected to the column selector (13), a source terminal connected to the array access device terminal of the addressed memory cell (16), and a gate terminal receiving a logic driving signal, the logic levels of which are defined by precise and stable voltages and are generated by a logic block (31) and an output buffer (32) cascaded together. The output buffer (32) may be supplied with either a read voltage (VREAD) or a program voltage (VPROG) supplied by a multiplexer (33). The biasing transistor (22; 36) may be either included as part of the column selector (13) and formed by the selection transistor (22) which is closest to the addressed memory cell (16) or distinct from the selection transistors (20, 21, 22) of the column selector (13).
Abstract:
A non volatile memory of the type comprising a predetermined number of sectors capable of ensuring the operation of the same even with a lower number of defective sectors than a predetermined limit.
Abstract:
The invention relates to an analog-to-digital conversion method and relevant device, in high-density multilevel non-volatile memory devices. The method applies to multilevel memory cells comprising a floating gate transistor with drain and source terminals; the cell to be read is subjected to a reading operation by applying predetermined bias voltage values to its drain and source terminals, while to its drain terminal is applied a predetermined current value (Iref), and by measuring the value of its gate voltage (Vg). The method of the invention comprises a first conversion phase the most significant bits (MSB) contained in the memory cell, followed by a second conversion phase of the least significant bits (LSB). The first step is completed within a time gap (T1-T0) which corresponds to the rise transient of the gate voltage signal (Vg), while the second step is started at the end of the transient.