Abstract:
A printed circuit assembly and method of making the same utilize in one embodiment an adhesive layer including a plurality of non-conductive "gauge particles" disposed within a non-conductive adhesive. When the adhesive layer is disposed between opposing printed circuit layers (be they insulating substrates, conductive layers, or other layers), individual gauge particles are interposed or sandwiched at various points between the layers such that the diameters of the particles control the layer separation throughout overlapping areas of thereof, thereby permitting careful control over layer separation. A printed circuit assembly and method of making the same utilize in another embodiment an interlayer interconnecting technology incorporating conductive posts that are deposited on one of a pair of contact pads formed on opposing printed circuit boards and thereafter bonded to the other in the pair of contact pads during lamination. Fusible material may be utilized in the conductive posts to facilitate mechanical bonding to a contact pad, and the posts project through a dielectric layer disposed between the printed circuit boards, thereby forming the electrical connections between the boards at discrete locations.
Abstract:
A BGA-type semiconductor device has a soldering bump a soldered state of which can be easily checked by visual inspection. A package has a bottom surface which faces the wiring board when the semiconductor device is mounted on the wiring board. A plurality of soldering bumps are provided on the bottom surface of the package. The soldering bumps are in a plurality of different sizes, and are located in positions where the soldering bumps are observable from outside of the package when the semiconductor device is mounted on the wiring board.
Abstract:
A ball grid array (BGA) integrated circuit package which has a plurality of vias located within the solder pads of a package substrate. The substrate supports an integrated circuit which is connected to the solder pads by the vias. Solder balls used to solder the package to an external printed circuit board are attached to the solder pads of the substrate. A solder mask plug is formed within the vias to prevent the solder balls from wicking into the vias. Locating the vias within the solder pads optimizes the routing space of the substrate and increases the routing density of the package.
Abstract:
An interposer including a first face and a second face opposite the first face and at least one electrically conductive plane. The at least one electrically conductive plane functions as a power, ground, or signal plane. At least one electrically insulating plane is positioned on opposite sides of the at least one electrically conductive plane. A plurality of plated through holes are formed through the at least one electrically conductive planes and the at least two electrically insulating planes. The through holes are selectively electrically joined to the at least one electrically conductive plane. At least one passive electronic structure is positioned within the interposer structure.
Abstract:
The present invention provides multi-layer multi-chip circuit board comprising at least two ATAB carriers having chips thereon, stacked upon each other in a pyramid configuration and attached to a substrate, thus reducing the required area on the substrate for mounting components to form a circuit board.
Abstract:
Multilayer circuit assemblies are made by stacking circuit panels having contacts on their top surfaces, through conductors extending between top and bottom surfaces and terminals connected to the bottom end of each through conductor. The terminals and contacts are arranged so that when the panels are stacked the terminals on the bottom of one panel are in alignment with the contacts on the top surface of the immediately underlying panel. The panels are selectively treated on their top and/or bottom surfaces so as to selectively disconnect or connect each contact to a terminal on the bottom surface of the same panel. For example, the top surface of the panel may be selectively etched to disconnect a contact from one through conductor and hence from the associated terminal. The aligned terminals and contacts are nonselectively connected to one another at each interface so that wherever a terminal and contact on adjacent panels are aligned with one another there are connected to one another. This forms composite vertical conductors extending through a plurality of the panels. The selective treatment of the panel top and bottom surfaces provides selective interruptions in the vertical conductors. A circuit panel precursor having the through conductors and methods of making the same are also provided.
Abstract:
Multilayer circuit assemblies are made by stacking circuit panels having contacts on their top surfaces, through conductors extending between top and bottom surfaces and terminals connected to the bottomend of each through conductor. The terminals and contacts are arranged so that when the panels are stacked the terminals on the bottom of one panel are in alignment with the contacts on the top surface of the immediately underlying panel. The panels are selectively treated on their top and/or bottom surfaces so as to selectively disconnect or connect each contact to a terminal on the bottom surface of the same panel. For example, the top surface of the panel may be selectively etched to disconnect a contact from one through conductor and hence from the associated terminal. The aligned terminals and contacts are nonselectively connected to one another at each interface so that wherever a terminal and contact on adjacent panels are aligned with one another there are connected to one another. This forms composite vertical conductors extending through a plurality of the panels. The selective treatment of the panel top and bottom surfaces provides selective interruptions in the vertical conductors. A circuit panel precursor having the through conductors and methods of making the same are also provided.
Abstract:
Multilayer circuit assemblies are made by stacking circuit panels having contacts on their top surfaces, through conductors extending between top and bottom surfaces and terminals connected to the bottomend of each through conductor. The terminals and contacts are arranged so that when the panels are stacked the terminals on the bottom of one panel are in alignment with the contacts on the top surface of the immediately underlying panel. The panels are selectively treated on their top and/or bottom surfaces so as to selectively disconnect or connect each contact to a terminal on the bottom surface of the same panel. For example, the top surface of the panel may be selectively etched to disconnect a contact from one through conductor and hence from the associated terminal. The aligned terminals and contacts are nonselectively connected to one another at each interface so that wherever a terminal and contact on adjacent panels are aligned with one another there are connected to one another. This forms composite vertical conductors extending through a plurality of the panels. The selective treatment of the panel top and bottom surfaces provides selective interruptions in the vertical conductors. A circuit panel precursor having the through conductors and methods of making the same are also provided.
Abstract:
Shaped contacts (40,42) for interconnecting circuits or for use in an integrated circuit test probe are electroplated as integral parts of circuit traces (34) upon a stainless steel mandrel (10). A shaped, hardened steel indentation tool (16,18,26,28) makes indentations (24a,24b) of predetermined shape in the surface of the mandrel (10), which is provided with a pattern of dielectric, such as Teflon (12), or photoresist. Areas of the steel mandrel, including the indentations (24a,24b), are electroplated with a pattern of conductive material (34,36,38), and a dielectric substrate (32) is laminated to the conductive material. The circuit features formed by the indentations define raised contacts of a conical (18) or pyramidal (28) shape, having free ends with a small area that allows higher pressures to be applied to a surface against which the contacts are pressed. This enables the contacts to penetrate foreign materials, such as oxides, that may form on the surface of the pads (56,58), to which the contacts are to be connected to ensure a good contact without any need for wiping action. The projecting contacts can also be pressed into plated holes (82,84) in a substrate, such as a printed wiring board, to which mateable/demateable electrical connection is to be made.
Abstract:
A method of bonding a flexible circuitized substrate to a circuitized substrate (e.g., printed circuit board) to interconnect selected circuitry of both substrates using solder. Solder paste is applied over conductive pads on the circuitized substrate and organic dewetting material (e.g., epoxy coating) adjacent thereto. The flexible substrate, having conductors located within and/or traversing an aperture in the flexible substrate's dielectric, is positioned above the solder paste and heat is applied (e.g., in an oven). The paste, dewetting from the organic material, "balls up" and substantially surrounds a solder member (ball) attached to a bridging portion of the flexible substrate's conductor, thereby connecting both substrates. A frame member may be used to align the flexible substrate, both during solder member attachment thereto, as well as for aligning the flexible substrate having solder members attached, to the respective solder paste locations on the lower substrate.