Abstract:
A substrate for a semiconductor device, a manufacturing method thereof and a method of manufacturing a semiconductor device using the same are provided to omit polishing and scribing tasks of a substrate at post-processing by using a heterojunction substrate. A substrate for a semiconductor device comprises a mono crystal substrate(10) and a heterojunction substrate(20). A separation groove(15) for separating a chip area is formed in the lower-part of the mono crystal substrate. The heterojunction substrate is welded with an oxide film as intermediation in the lower-part of the mono crystal substrate and supports the mono crystal substrate. The mono crystal substrate is one among sapphire, SiC, GaAs, GaN, AlN, ZrB2, LiAlO2, MgO, spinel(MgAl2O4) ZnO and LiGaO2. The oxide film is one among a silicon oxide film(SiO2), ZrO2, Al2O3, TiO2, PSG(Phosphorous Silicate Glass) and BPSG(Boro-Phosphorous Silicate Glass).
Abstract:
A method for growing a III-V group compound semiconductor quantum dot through interception of a periodic supply of a V-group element is provided to properly control mobility of a III-group element on the surface of a substrate by continuously supplying a III-group element when a quantum dot is grown on the substrate wherein a supply of a V-group element is periodically intercepted. A buffer layer is grown on a semiconductor substrate in a chamber. A III-group element and a V-group element are supplied to grow a compound semiconductor quantum dot on the buffer layer wherein the III-group element is continuously supplied and the supply and interception of the V-group element are periodically repeated. The supply of the III-group element and the V-group element is intercepted.
Abstract:
본 발명은 반도체 양자점(quantum dot) 구조 형성 방법에 관한 것으로서, 양자점의 발광 파장을 조절하는 동시에 양자점의 균일도를 증가시키는 것을 목적으로 한다. 본 발명에서는 반도체 기판 상에 양자점 층을 형성한 다음, 덮개층(capping layer)을 형성하기 전에, 격자 상수가 덮개층보다 작고 에너지 간격(band gap)은 덮개층보다 큰 이종 덮개층을 삽입한다. 이 이종 덮개층의 두께를 변화시키면 양자점의 발광 파장을 조절할 수 있고, 양자점을 더욱 균일하게 변형시켜 발광 파장의 반가폭을 줄일 수 있다. 따라서, 본 발명에 따른 양자점 구조를 양자점 레이저, 증폭기, 광 스위칭 등의 광소자로 응용할 때 그 소자 특성이 개선될 수 있다.
Abstract:
PURPOSE: A two-step growth interruption process for control of semiconductor quantum dot is provided to control a solid shape of a quantum dot by performing two growth interruption processes. CONSTITUTION: A chemical compound semiconductor buffer layer(110) is grown on a semiconductor substrate(100). A quantum dot crystallization layer is formed on the chemical compound semiconductor buffer layer(110). The grating constant of quantum dot crystallization layer is larger than that of the chemical compound semiconductor buffer layer(110). A quantum dot(320) of a solid shape is formed on the quantum dot crystallization layer by performing the first growth interruption process. The solid shape of the quantum dot(320) is controlled by performing the second growth interruption process. A cover layer(330) is grown on the quantum dot(320). The grating constant of the cover layer(330) is smaller than that of the quantum dot crystallization layer.
Abstract:
PURPOSE: A DRAM(Dynamic Random Access Memory) using a self aligned SOI(Silicon-On-Insulator) double gate transistor and a method for manufacturing the same are provided to be capable of solving the problems such as DIBL(Drain Induced Barrier Lowering) phenomenon, the increase of channel resistance, the increase of gate resistance, and junction leakage current. CONSTITUTION: After forming a double gate at the upper portion of a substrate, a cell is formed by forming a source/drain for CMOS(Complementary Metal Oxide Semiconductor) at the peripheral region of the double gate. Then, a direct contact and a buried contact(161) of the cell, are formed at the resultant structure. A metal contact is formed on the direct and buried contact.
Abstract:
본 발명의 목적은 공정이 간단하고, 에너지 소모량이 감소되며, 넓은 영역 및 특정 모양의 영역에서 나노와이어의 성장이 가능하고, 나노와이어의 길이, 직경, 나노와이어의 분포 밀도, 나노와이어의 성장 속도 등의 조절이 가능한 인듐 나노와이어의 성장 방법을 제공하는 것이다. 이를 위하여 본 발명에서는, InGaN 기판을 준비하는 단계(a); 및 고진공 조건 하에서 상기 InGaN 기판 상의 소정의 위치에 집속 이온빔을 소정 시간 조사하여 상기 InGaN 기판 상의 집속 이온빔이 조사된 위치에서 인듐 나노와이어를 성장시키는 단계(b)를 포함하는 인듐 나노와이어의 제조 방법을 제공한다. 인듐 나노 와이어, GaN, InGaN, 이온빔
Abstract:
A manufacturing method of a substrate on which a pattern is formed is provided to prevent damage generated in a dry etching by patterning oxide beads on a substrate with a desired shape. A manufacturing method of a substrate on which a pattern is formed comprises the following steps: a step for forming a first binding pattern having a selective binding force on a forming position of an oxide bead pattern of a substrate(S210); a step for coating a second binding to the oxide bead(S220); a step for forming the oxide bead on which the second binding is coated through a coating on the first binding pattern(S230); and a step for heat-treating the substrate(S240).
Abstract:
A method for growing indium nanowires is provided to have a simple process, to reduce energy consumption, and to control the length, diameter, distribution density and growth rate of nanowires. A method for growing indium nanowires includes the steps of: (a) providing an InGaN substrate(10); and (b) irradiating a predetermined position(10b) on the InGaN substrate with a focused ion beam(20) under a high vacuum condition for a predetermined time to grow indium nanowires at the position on the InGaN substrate irradiated with the focused ion beam. When the focused ion beam is applied, the growth condition of nanowires has a pressure range from 3.75x10^(-5) Pa to 2.75x10^(-3) Pa, a voltage range from 5.0 kV to 30 kV, and a current range from 3 pA to 1 nA.
Abstract:
A method for forming III-nitride semiconductor layer and an apparatus using the same are provided to use single crystal SiO2 substrate instead of a conventional sapphire substrate and a silicon carbide substrate. A method for forming III-nitride semiconductor layer includes the steps of: a first step of forming a buffer layer(32) on a single crystal SiO2 substrate(31); and a second step of forming the III-nitride semiconductor layer(33) on the buffer layer. In at least one between the first and second steps, the single crystal SiO2 substrate serves a displacive phase transition. The single crystal SiO2 substrate is any one selected from a group consisting of an alpha quartz, a beta quartz, a low tridymite, a high tridymite, a low cristobalite, a high cristobalite or the like.
Abstract:
본 발명은 결함 밀도가 낮은 고품질 질화물 반도체 에피층 성장 방법에 관한 것이다. 본 발명에 따른 질화물 반도체 에피층 성장 방법에서는, 고온에서 얇은 두께의 평탄한 2차원 질화물 반도체 완충층을 성장시킨 후 온도를 낮추어 적정 성장 온도에서 상기 질화물 반도체 완충층과 동종의 질화물 반도체 에피층을 성장시킨다. 이러한 방법으로 성장시킨 질화물 반도체 에피층은 결함 밀도가 낮고 결정성이 양호하여 고효율 광소자 및 전자소자 제작에 유리하다.