Abstract:
A biosensor using a silicon nano wire is provided to form the silicon nano wire in a repetitive form of same pattern and widen the area in which a probe molecule is fixed. A biosensor using a silicon nano wire comprises a source electrode(S), drain electrode(D), silicon nano(13A, 13b), probe molecules(40). A method for manufacturing the biosensor using the silicon nano wire comprises: a step of forming a buffer layer on the upper side of semiconductor substrate in which insulating layer(12) and silicon layer is sequencially formed; a step of forming electrode pattern and silicon nano wire pattern on the upper sided of buffer layer through the lithography process; a step of etching the buffer layer and silicon layer; a step of forming the electrode in the electrode pattern area; a step of removing the buffer layer of upper side to exposes the silicon nano wire; and a step of probe molecule on the exposed silicon nano wire.
Abstract:
A bio sensor using nano dot is provided to reduce production cost by using a CMOS process and improve the sensitivity by easily changing electric conductivity of silicon nano line. A bio sensor using nano dot comprises: source(S) and drain(D) which is formed at the upper side of substrate(110); a silicon nano line(150) which is formed between the source and drain; and a probe molecule(P) which is fixed on the silicon nano line. A method for producing the bio sensor using the nano dot comprises: a step of forming the source and drain; a step of forming the silicon nano line; a step of fixing the probe molecule on the silicon nano line; and a step of injecting charged nano dot with the target molecule.
Abstract:
A gas storage medium is provided to improve efficiency of gas storage capability by sufficiently securing a surface area for gas storage, a gas storage apparatus having the gas storage medium is provided, and a gas storage method using the gas storage apparatus is provided. A gas storage medium is characterized in that materials with variable ionic values are spaced from one another to form a multilayered structure, and the materials comprise excess electrons that do not participate in chemical bond. A gas storage apparatus comprises: a chamber(104); a gas storage medium(101) in which materials with variable ionic values are spaced from one another to form a multilayered structure, and the materials comprise excess electrons that do not participate in chemical bond; a heating member(105) for heating the gas storage medium; and a cooling member(106) for cooling the gas storage medium. The chamber has an inlet(104A) installed therein to flow a material to be stored into the gas storage medium, and an outlet(104B) formed therein to discharge the material to be stored from the gas storage medium. The gas storage apparatus further comprises a supporting member(103) for supporting the materials with variable ionic values.
Abstract:
A method for selectively reforming a non-modified solid surface and a method for immobilizing an active material on the reformed solid surface are provided to immobilize the active material strongly and stably, such as a bio-material or a functional material, on the non-modified solid surface. A non-modified solid surface, which is not oxidized or nitrified, is reformed with light-sensitive functional groups. The functional group-reformed solid surface is contacted with compounds including reactive functional groups and aldehyde protection groups. A light is applied to the solid surface to form surface-carbon couple, surface-nitrogen couple, or surface-sulfur couple. An end of the solid surface is reformed with aldehyde protection groups. Protection groups are removed from the aldehyde-reformed surface to reform the solid surface with aldehyde.
Abstract:
본 발명은 유기 반도체 소자 및 그 제조방법에 관한 것으로, 본 유기 반도체 소자는 제1 전극과, 상기 제1 전극 상에 형성되는 전자 채널층과, 상기 전자 채널층 상에 형성되는 제2 전극을 포함하며, 상기 전자 채널층은, 상기 제1 전극 상에 형성되는 하부 유기물층과, 상기 하부 유기물층 상에 형성되며, 상호 이격 거리를 두고 배치된 소정 크기의 나노 입자를 갖는 나노 입자층과, 상기 나노 입자층의 상부에 형성되는 상부 유기물층을 포함한다. 이에 따라, 간단한 제작 공정을 이용하여 고집적화가 가능한 유기 반도체 소자를 제작할 수 있으며, 임계 전압 특성과 소자 축소화에 따른 소자 간의 불균일성을 해결하여 우수한 성능의 반도체 소자를 구현할 수 있다. 메모리, 비휘발성 메모리, 유기물, 전기적 이 안정성, 전기전도도, 나노입자, 랑뮤어-블러짓 박막
Abstract:
본 발명은 수 나노미터(nm) 이하의 폭을 갖는 나노갭(nano-gap)을 사이에 두고 두 개의 전극이 접해 있는 나노갭 전극소자의 제작 방법에 관한 것으로, 서로 다른 식각비를 갖는 반도체층들을 이용하여 공기중에 부양된 구조의 나노 구조물을 형성하고, 반도체층으로부터 나노 구조물까지의 높이, 나노 구조물의 폭 및 금속의 증착 각도를 조절하여 나노갭을 형성한다. 나노갭의 위치와 폭을 용이하게 조절할 수 있고 반복되는 구조를 갖는 어레이 형태의 나노갭을 동시에 형성할 수 있다. 나노 구조물, 증착 각도, 나노갭, 전극소자, 어레이
Abstract:
본 발명은 쓰리-게이트 전계효과 분자트랜지스터 및 그 제조방법에 관한 것으로, 보다 상세하게는 기판 상에 형성되며 그 상면에 소오스/드레인 영역의 홈과 상기 홈 사이를 연결하기 위한 소정의 폭을 갖는 연결홈이 구비된 게이트 전극과, 상기 게이트 전극의 전체 상부면에 형성된 게이트 절연막과, 상기 연결홈에 형성된 소정의 폭을 갖는 갭을 중심으로 상기 소오스/드레인 영역의 홈 및 상기 연결홈 일부분의 게이트 절연막 상에 형성된 소오스/드레인 전극과, 상기 게이트 전극에 둘러싸이도록 상기 갭에 삽입되며 상기 소오스/드레인 전극을 연결하기 위한 적어도 하나의 분자로 구성된 채널영역을 포함함으로써, 채널을 통과하는 전자들에 대한 게이트전압의 영향을 극대화할 수 있으며, 게이트 전압의 증감에 따른 소오스/드레인 간 전류의 변화이득을 크게 증가시킬 수 있어 종래의 소자에 비해 높은 기능성과 신뢰성을 가지는 분자전자회로를 구현할 수 있는 효과가 있다. 분자트랜지스터, 쓰리-게이트, 전계효과, 분자전자회로, 소오스/드레인 전극, 채널영역