32.
    发明专利
    未知

    公开(公告)号:BR9404247A

    公开(公告)日:1995-06-20

    申请号:BR9404247

    申请日:1994-10-26

    Applicant: IBM

    Abstract: The phase transformation temperature of a metal silicide layer formed overlying a silicon layer on a semiconductor wafer is lowered. First, a refractory metal is disposed proximate to the surface of the silicon layer, a precursory metal is deposited in a layer overlying the refractory metal, and the wafer is heated to a temperature sufficient to form the metal silicide from the precursory metal. The precursory metal may be a refractory metal, and is preferably titanium, tungsten, or cobalt. The concentration of the refractory metal at the surface of the silicon layer is preferably less than about 10 atoms/cm . The refractory metal may be Mo, Co, W, Ta, Nb, Ru, or Cr, and more preferably is Mo or Co. The heating step used to form the silicide is performed at a temperature less than about 700 DEG C, and more preferably between about 600-700 DEG C. Optionally, the wafer is annealed following the step of disposing the refractory metal and prior to the step of depositing the precursory metal layer. Preferably, this annealing step is performed at a wafer temperature of at least about 900 DEG C.

    Method for Lowering the Phase Transformation Temperature of a Metal Silicide

    公开(公告)号:CA2118147A1

    公开(公告)日:1995-04-30

    申请号:CA2118147

    申请日:1994-10-14

    Applicant: IBM

    Abstract: The phase transformation temperature of a metal silicide layer formed overlying a silicon layer on a semiconductor wafer is lowered. First, a refractory metal is disposed proximate to the surface of the silicon layer, a precursory metal is deposited in a layer overlying the refractory metal, and the wafer is heated to a temperature sufficient to form the metal silicide from the precursory metal. The precursory metal may be a refractory metal, and is preferably titanium, tungsten, or cobalt. The concentration of the refractory metal at the surface of the silicon layer is preferably less than about 10 atoms/cm . The refractory metal may be Mo, Co, W, Ta, Nb, Ru, or Cr, and more preferably is Mo or Co. The heating step used to form the silicide is performed at a temperature less than about 700 DEG C, and more preferably between about 600-700 DEG C. Optionally, the wafer is annealed following the step of disposing the refractory metal and prior to the step of depositing the precursory metal layer. Preferably, this annealing step is performed at a wafer temperature of at least about 900 DEG C.

    Mikrostrukturmodifikation in Kupferverbindungsstrukturen

    公开(公告)号:DE112012003823T5

    公开(公告)日:2014-08-07

    申请号:DE112012003823

    申请日:2012-07-18

    Applicant: IBM

    Abstract: Eine Metallverbindungsstruktur und ein Verfahren zur Herstellung der Metallverbindungsstruktur. Mangan (Mn) wird in eine Kupfer(Cu)-Verbindungsstruktur eingebaut, um die Mikrostruktur zu modifizieren, um Bambusstil-Korngrenzen in Sub-90-nm-Technologien zu erreichen. Vorzugsweise sind die Bambuskörner durch Abstände von weniger als der „Blech”-Länge getrennt, so dass eine Kupfer(Cu)-Diffusion durch Korngrenzen vermieden wird. Das hinzugefügte Mn löst auch das Wachstum von Cu-Körnern herunter bis zu der unteren Fläche der Metallleitung aus, so dass eine echte Bambusmikrostruktur gebildet wird, welche bis zu der unteren Fläche reicht, und der Cu-Diffusionsmechanismus entlang Korngrenzen, die entlang der Länge der Metallleitung orientiert sind, eliminiert wird.

    METHOD FOR FORMING ELECTROMIGRATION-RESISTANT STRUCTURES BY DOPING

    公开(公告)号:MY124349A

    公开(公告)日:2006-06-30

    申请号:MYPI9905231

    申请日:1999-12-02

    Applicant: IBM

    Abstract: A METHOD FOR FORMING A COPPER CONDUCTOR (56, 58) IN AN ELECTRONIC STRUCTURE (50) BY FIRST DEPOSITING A COPPER COMPOSITION (88, 90, 100) IN A RECEPTACLE FORMED IN THE ELECTRONIC STRUCTURE, AND THEN ADDING IMPURITIES INTO THE COPPER COMPOSITION SUCH THAT ITS ELECTROMIGRATION RESISTANCE IS IMPROVED IS DISCLOSED. IN THE METHOD, THE COPPER COMPOSITION CAN BE DEPOSITED BY A VARIETY OF TECHNIQUES SUCH AS ELECTROPLATING, PHYSICAL VAPOR DEPOSITION AND CHEMICAL VAPOR DEPOSITION. THE IMPURITIES WHICH CAN BE IMPLANTED INCLUDE THOSE OF C, O, CI, S AND N AT A SUITABLE CONCENTRATION RANGE BETWEEN ABOUT 0.01 PPM BY WEIGHT AND ABOUT 1000 PPM BY WEIGHT.THE IMPURITIES CAN BE ADDED BY THREE DIFFERENT METHODS. IN THE FIRST METHOD, A COPPER SEED LAYER IS FIRST DEPOSITED INTO A RECEPTACLE AND AN ION IMPLANTATION PROCESS IS CARRIED OUT ON THE SEED LAYER, WHICH IS FOLLOWED BY ELECTROPLATING COPPER INTO THE RECEPTACLE. IN THE SECOND METHOD, A COPPER SEED LAYER IS FIRST DEPOSITED INTO A RECEPTACLE, A COPPER COMPOSITION CONTAINING IMPURITIES IS THEN ELECTRODEPOSITED INTO THE RECEPTACLE AND THE ELECTRONIC STRUCTURE IS ANNEALED SO THAT IMPURITIES DIFFUSE INTO THE COPPER SEED LAYER. IN THE THIRD METHOD, A BARRIER LAYER (82, 94) IS FIRST DEPOSITED INTO A RECEPTACLE, DOPANT IONS ARE THEN IMPLANTED INTO THE BARRIER LAYER WITH A COPPER SEED LAYER (84, 96) SUBSEQUENTLY DEPOSITED ON TOP OF THE BARRIER LAYER. AN ANNEALING PROCESS FOR THE ELECTRONIC STRUCTURE IS THEN CARRIED OUT SUCH THAT DOPANT IONS DIFFUSE INTO THE COPPER SEED LAYER. THE PRESENT INVENTION METHOD MAY FURTHER INCLUDE THE STEP OF ION-IMPLANTING AT LEAST ONE ELEMENT INTO A SURFACE LAYER OF THE COPPER CONDUCTOR (90, 100) AFTER THE CONDUCTOR IS FIRST PLANARIZED. THE SURFACE LAYER MAY HAVE A THICKNESS BETWEEN ABOUT 30 A AND ABOUT 500 A. AT LEAST ONE ELEMENT MAY BE SELECTED FROM CO, AI, SN, IN, TI AND CR.FIG. 2

    38.
    发明专利
    未知

    公开(公告)号:ES2136148T3

    公开(公告)日:1999-11-16

    申请号:ES94115744

    申请日:1994-10-06

    Applicant: IBM

    Abstract: The phase transformation temperature of a metal silicide layer formed overlying a silicon layer on a semiconductor wafer is lowered. First, a refractory metal is disposed proximate to the surface of the silicon layer, a precursory metal is deposited in a layer overlying the refractory metal, and the wafer is heated to a temperature sufficient to form the metal silicide from the precursory metal. The precursory metal may be a refractory metal, and is preferably titanium, tungsten, or cobalt. The concentration of the refractory metal at the surface of the silicon layer is preferably less than about 10 atoms/cm . The refractory metal may be Mo, Co, W, Ta, Nb, Ru, or Cr, and more preferably is Mo or Co. The heating step used to form the silicide is performed at a temperature less than about 700 DEG C, and more preferably between about 600-700 DEG C. Optionally, the wafer is annealed following the step of disposing the refractory metal and prior to the step of depositing the precursory metal layer. Preferably, this annealing step is performed at a wafer temperature of at least about 900 DEG C.

    39.
    发明专利
    未知

    公开(公告)号:AT183251T

    公开(公告)日:1999-08-15

    申请号:AT94115744

    申请日:1994-10-06

    Applicant: IBM

    Abstract: The phase transformation temperature of a metal silicide layer formed overlying a silicon layer on a semiconductor wafer is lowered. First, a refractory metal is disposed proximate to the surface of the silicon layer, a precursory metal is deposited in a layer overlying the refractory metal, and the wafer is heated to a temperature sufficient to form the metal silicide from the precursory metal. The precursory metal may be a refractory metal, and is preferably titanium, tungsten, or cobalt. The concentration of the refractory metal at the surface of the silicon layer is preferably less than about 10 atoms/cm . The refractory metal may be Mo, Co, W, Ta, Nb, Ru, or Cr, and more preferably is Mo or Co. The heating step used to form the silicide is performed at a temperature less than about 700 DEG C, and more preferably between about 600-700 DEG C. Optionally, the wafer is annealed following the step of disposing the refractory metal and prior to the step of depositing the precursory metal layer. Preferably, this annealing step is performed at a wafer temperature of at least about 900 DEG C.

Patent Agency Ranking