Abstract:
PURPOSE: A capacitor sensor capable of sensitivity control is provided to simplify the structure by reducing the number of cells and to control the sensitivity of the sensor. CONSTITUTION: A capacitor sensor comprises a capacitor(100), electrodes(110,120), and a capacitance measurement unit. The capacitor is constituted with a dielectric material having a unique dielectric constant and has two faces facing to each other. The electrodes are respectively arranged in the two faces of the capacitor. The shape of the electrodes is a 2D shape having portions becoming narrow to one side. The electrodes are symmetrically arranged in order to make the portions becoming narrow face each other. The narrowing degree of the portions is varied. The capacitance measurement unit is connected to each of the two electrodes.
Abstract:
PURPOSE: A global position estimation and correction method for a mobile robot using a magnetic landmark is provided to easily estimate and correct a position error of a mobile robot which is out of sync with an estimated coordinate of the absolute position of the landmark. CONSTITUTION: A global position estimation and correction method for a mobile robot(10) using a magnetic landmark(21) comprises the following steps. A landmark pattern adjacent to a pattern of a specific landmark where the mobile robot is positioned is recognized. The coordinate of the absolute position of the landmark is estimated. A position error of the mobile robot, which is out of sync with the estimated absolute position coordinate, is estimated. The position error is corrected according to the estimated position error in order to move the mobile robot to the absolute position coordinate.
Abstract:
PURPOSE: A humanoid robot hand is provided to vary the motion range of the robot hand because a link unit is composed of three separated joint units. CONSTITUTION: A humanoid robot hand(100) comprises a thumb unit(130), a forefinger unit(121), and a link unit(150). The link unit connects the thumb unit and the forefinger unit. The link unit supports an object grasped by the thumb unit and the forefinger unit. The link unit comprises multiple link joints and multiple rods. The rods are rotatably connected to the link joint units.
Abstract:
PURPOSE: A solid electrolyte polymer and a polymer actuator are provided to enable low voltage operation and to obtain superior thermal stability and chemical resistance using a cross-linked PVDF-based polymer as the polymer for the actuator. CONSTITUTION: A method for manufacturing a polymer actuator comprises the following steps: putting a cross-linking agent into PVDF-based solution after forming the PVDF-based saluting using a PVDF-based polymer powder; forming a cross-linked PVDF polymer membrane through thermal treatment after forming the PVDF-based solution into a membrane shape; coating the cross-linked PVDF-based polymer membrane with a conductive polymer solution(34); and injecting an electrolyte into the PVDF polymer membrane.
Abstract:
본 발명에 따른 로봇용 피부센서는 로봇의 표면에 부착되는 유연한 폴리머 재질의 로봇용 피부, 상기 로봇용 피부의 내부에 구비되고, 유전 탄성체로 이루어진 필름과 상기 필름의 상하면에 각각 마련된 제1전극 및 제2전극을 포함하는 센서부 및 상기 센서부에 전원을 인가하여 센서부의 임피던스 변화를 감지하고, 감지된 결과를 이용하여 상기 로봇용 피부에 접촉한 외부 부하의 크기를 판단하는 구동제어부를 포함하는 것을 특징으로 한다. 본 발명에 따른 로봇용 피부센서는 로봇의 표면에 인간의 피부와 같은 유연함을 제공함과 동시에 접촉센서로서 기능하여 로봇의 표면에 접촉하는 외부 부하의 크기 및 접촉위치를 감지할 수 있고, 이러한 유연함으로 인하여 지능형 로봇에 요구되는 임의의 형상이나 동작에 적용되는 경우에도 센서 효율의 저감을 발생시키지 않는다는 장점이 있다. 유전 탄성체, 접촉센서, 로봇
Abstract:
A sensing actuator using dielectric elastic body capable of controlling the operation of the actuator is provided to control the operation of the actuator by using physical property change of dielectric elastomer. A sensing actuator includes a driving unit, an impedance sensing unit, a power supplier and a controller for driving a micro robot. A driving unit(12) comprises a respective equipped first electrode in the upper side of a film, consisting of the film and lower-part and the second electrode. An impedance sensing unit(13) senses the impedance of the driving unit The controller controls the operation of the driving unit according to the impedance size.