Abstract:
PURPOSE: A method of changing wavelength response of quantum well infrared photo-detectors by using quantum well intermixing technique is provided to change the detected wavelength band of the quantum well infrared photo-detectors by using a substrate having a changed band gap of a quantum well infrared absorption layer. CONSTITUTION: A band gap of a quantum well infrared absorption layer of quantum well infrared photo-detectors is increased by using various quantum well intermixing processes. A quantum well infrared detection device is fabricated by using a substrate having the increased band gap of the quantum well infrared absorption layer. Various dielectric capping layers such as SiO2, SiNx, and SrF2 are coated on the substrate. The band gap of the quantum well infrared absorption layer is increased by performing a thermal process for the substrate.
Abstract:
The present invention provides an ultra-high speed optical wavelength converter apparatus for enabling extraction of all optical lock signals which implements an ultra-high speed wavelength converter without an external pump light by constructing a semiconductor-fiber ring laser (SFRL) in which a semiconductor optical amplifier (SOA) is used as a laser gain medium and simultaneously implements a clock pulse generator for generating an optical pulse string which is injection mode-locked by an input signal light, and then is phase-locked with an input signal string. According to the present invention, there is proposed an ultra-high speed optical wavelength converter apparatus for enabling extraction of all optical lock signals in which when an output is obtained at a suitable position within a laser resonator after constituting a semiconductor optical laser, a phase lock signal is generated by an injection mode locking laser and a wavelength converter apparatus eliminating the necessity of an external pump light is implemented at another position thereof.
Abstract:
본 발명은 스스로 뭉쳐서 형성된 양자점에서 나오는 광의 스펙트럼이 매우 넓은 것을 이용하여 반도체 광 증폭기의 이득 대역폭을 확장하는 방법에 관한 것이다. 더 상세하게는 InGaAs/InGaAsP/InP 양자우물 반도체 광증폭기의 이득 대역폭 확장방법에 있어서, 소정 두께의 InP 버퍼층을 성장시키는 과정과, 상기 InP 버퍼층 성장후 소정 가스를 공급하는 제1 가스 공급 과정과, 상기 InP 버퍼층 위로 InAs 단일 우물 구조층을 성장시키는 과정과, 상기 InAs 층 성장 후 소정 가스를 공급하여 격자 상수가 맞지 않는 상기 InAs 층이 서로 뭉쳐서 양자점을 형성하도록 하는 제2 가스 공급 과정과, 상기 InAs 층 위로 소정 두께의 InP 캡층을 성장시키는 과정으로 양자점을 생성하여 반도체 광 증폭기의 이득영역으로 양자점을 도입하고, 상기 InAs가 서로 뭉치면서 각 점들의 크기와 높이가 불균일하게 서로 독립적인 점을 형성하게 함을 특징으로 한다.
Abstract:
PURPOSE: A method for locally forming a different band gap in a quantum well by a dielectric-semiconductor composite cover layer is provided to regulate a degree of disorder of the quantum well. CONSTITUTION: The method begins with growing an InGaAs/InGaAsP quantum well substrate by a chemical beam epitaxy technique. Next, a dielectric thin layer made of such as SiO2 or SiNx is formed as a cover layer on the quantum well substrate by a plasma-enhanced chemical deposition technique. After a heat treatment step is carried out at a temperature of 600 - 800°C for 4 - 16 minutes, the dielectric thin layer is removed. In addition, InP, InGaAs or InGaAsP is used as a semiconductor cover layer.
Abstract:
Computer central processing unit scans electron beam by scanning circuit by running analog/digital convertor and detects generating signal with detector(S10). Detected signal converted through analog/digital convertor after passing through an image signal amplifier and is stored at data storing device by computer central processing unit. Stored signal outputs to computer monitor and outputs to electron microscope monitor(S11) through an image signal amplifier from a detector(S10). Therefore, electron beam lithography device carries mask pattern alignment from an output alignment mark image and by using electron beam blocker(S4) blocks electron beam and controls electron microscope magnification so all electron beam lithography area are positioned within range of scanning.
Abstract:
광반응스마트윈도우가제공된다. 상기광반응스마트윈도우는자외선우무에따라투과도가조절되는액정층을태양전지와결합하여새로운형태의전기생산스마트윈도우로서, 자외선이있는낮에는투명해져서창문에노출되는태양광을전기에너지로변환할수 있고, 자외선이없는저녁에는불투명해져서커튼없는창문으로사용될수 있다.