Abstract:
A flat panel display and a method for forming a flat panel display. In one embodiment, the flat panel display includes a cathodic structure which is formed within an active area on a backplate (100). The cathodic structure includes a emitter electrode metal (102) composed of strips of aluminum overlain by a layer of cladding material.
Abstract:
Wire-coated graphite electron emitters are disclosed. These field emitters find particular usefulness in field emitter cathodes, display panels and lighting devices. These graphite field emitters can be formed by coating a paste comprised of graphite and glass frit onto the wire, firing the paste and bombarding the fired product with an ion beam.
Abstract:
A field electron emission material is formed by coating a substrate (221, 230) having an electrically conductive surface with a plurality of electrically conductive particles (223, 231). Each particle has a layer of electrically insulating material (222, 232) disposed either in a first location between the conductive surface of the substrate (221) and the particle (223), or in a second location between the particle (231) and the environment (237) in which the field electron emission material is disposed, but not in both of such first and second locations, so that at least some of the particles (223, 231) form electron emission sites at such first or second locations. A number of field emission devices are disclosed, utilising such electron emission material.
Abstract:
Titanium aluminum nitrogen ("Ti-Al-N") is deposited onto a semiconductor substrate area to serve as an antireflective coating. For wiring line fabrication processes, the Ti-Al-N layer serves as a cap layer (56) which prevents unwanted reflection of photolithography light (i.e., photons) during fabrication. For field emission display devices (FEDs) (150), the Ti-Al-N layer (200) prevents light originating at the display screen (118) anode from penetrating transistor junctions that would hinder device operation. For the wiring line embodiment an aluminum conductive layer (54) and a titanium-aluminum underlayer (52) are formed beneath the antireflective cap layer. The Ti-Al underlayer reduces the shrinkage which occurs in the aluminum conductive layer during heat treatment.
Abstract:
Flat panel image sensor (10) is provided by combining photoconductive imaging electrodes of a vidicon with a two-dimensional array of cold cathode field emitters (14) commonly used for flat panel field emission display (FED) systems. The FED operates normally to emit electrons which are accelerated in prior art displays towards a luminescent phosphor to generate light output proportional to the cathode emission. Rather than accelerating towards a phosphor, electrons are accelerated towards a photoconductor layer (16) to replace charge removed from the layer by an incident radiation pattern directed at the photoconductor layer (16) through a layer of transparent, electrically-conducting material (17) which serves as a radiation window. The transparent, electrically-conducting layer (17) may be partitioned to reduce stray capacitance for large area sensors and the partitioned, electrically-conducting layer (17) permits a parallel readout mode of operation.
Abstract:
A field emitter device (10) for selective emission of an electron and/or ion beam comprising a substrate member (12) having an array (14) of field emitter elements (16) thereon, in which the field emitter elements and/or substrate member have a varied conformation producing a beam of appropriate focused and/or directional character. Also disclosed is a display article (260) for producing an output in response to impingement of electron beams thereon, comprising a substrate member (262) on which is disposed an array of phosphor elements (264), with a diamond-like film coated on the phosphor elements to maintain the phosphor elements in position on the substrate member. Also disclosed is a field emission apparatus (210) comprising such field emitter device and display article, such as a flat panel display.
Abstract:
A cold-cathode electron source element of the present invention has a cold cathode (10) on a substrate (1), and the cold cathode (10) comprises a cold cathode base material (4) and particles (8) of conductive material dispersed in the cold cathode base material (4), the particles having a diameter which is sufficiently smaller than the thickness of the cold cathode (10) and a work function which is lower than that of the cold cathode base material (4). The cold-cathode electron element of the present invention can be driven at a low voltage and provide a high emission current in a stable fashion and superior processibility of cold cathodes, whereby it is possible to enlarge the area of an element.
Abstract:
This invention relates to a method or forming and using a very dense layer of particles that have been encapsulated in a thermoplastic polymer binder and electrically deposited on a substrate. Space-charge-limited deposition is made possible by the addition of novel charge directors that are essentially nonconductive in aliphatic hydrocarbon liquid in the absence of binder. The particle layer can be designed to possess numerous characteristics by varying the particles to be encapsulated. Many structures can be fabricated from the different particle layers including thermal detectors, electrical interconnects, p-n junctions, micro-metallic structures, field-emitting devices, and optical coatings. A technique for the removal of semiconductor dislocations is also discussed.