Abstract:
PURPOSE: A continuously variable valve lift apparatus is provided to use in a V-type engine by making valve profiles of the continuously variable valve lift apparatuses, which are symmetrical, identical. CONSTITUTION: A continuously variable valve lift apparatus comprises an input cam(110), a follower supporting part(200), a follower(300), a linear guide(400), an output cam(500), and a valve opening/closing part(600). The input cam is installed on a cam shaft(100). The follower is supported by the follower supporting part. The location of the central axis of the follower is varied along the circumferential direction of the cam shaft. The follower reciprocates around the central axis by being delivered with the rotation of the input cam. The output cam is contacted with the follower and reciprocates along the linear guide. The valve opening/closing part is opened and closed by being contacted with the output cam. The follower supporting part is formed in the cam shaft to be rotated.
Abstract:
A continuously variable valve lift apparatus may include a camshaft, a cam portion on which a cam is formed and into which the camshaft is inserted, a slider housing into which the cam portion is rotatably inserted and a position thereof is rotatable around a pivot shaft, a control portion configured to selectively push the slider housing to be rotated, a spring guide connected to the slider housing for elastically supporting the slider housing, a rotation deliverer configured to transmit rotation of the camshaft to the cam portion, an output portion rotatable around the pivot shaft and onto which a valve shoe is formed, and a valve unit configured to be driven by the valve shoe.
Abstract:
A hybrid vehicle includes an internal combustion engine and a rotary electric machine. The internal combustion engine includes a variable valve actuating device configured to change an operation characteristic of an intake valve. The rotary electric machine is configured to generate driving force for propelling the hybrid vehicle. A controller for the hybrid vehicle includes a traveling control unit and a valve actuation control unit. The traveling control unit executes traveling control for causing the hybrid vehicle to travel by using the driving force of the rotary electric machine while stopping the internal combustion engine. The traveling control unit starts up the internal combustion engine while executing the traveling control. The valve actuation control unit controls the variable valve actuating device. The valve actuation control unit, when the internal combustion engine is started up while the traveling control is executed, sets at least one of a valve lift and valve operating angle of the intake valve such that the at least one of the valve lift and valve operating angle of the intake valve when the hybrid vehicle travels at a first vehicle speed is smaller than the corresponding at least one of the valve lift and valve operating angle of the intake valve when the hybrid vehicle travels at a second vehicle speed. The second vehicle speed is lower than the first vehicle speed.
Abstract:
A continuous variable valve lift device includes a rotatable input shaft, an input cam rotating with the input shaft, a control shaft rotatably disposed parallel to the input shaft, an input rocker mounted to, and rotatable round, the control shaft so as to be in contact with the input cam to have a torque forwarded thereto from the input cam, a control link mounted to the control shaft eccentrically, an input link having one end connected to the input rocker, a connecting rod connected between the other end of the input link and the control link, and a valve operating unit mounted to rotate as one unit with the control shaft for operating the valve, the valve operating unit having a control long hole for movably inserting the connecting rod therein, for improving the fuel consumption at a low load operation range of the engine.
Abstract:
Actuator device of a sliding cam system, having at least one sliding cam (2) and having an engagement pin (9) which protrudes out of a housing (6), wherein the housing (6) can be fastened to a component of a cylinder head or to the cylinder head of an internal combustion engine, and it is possible for contact to be made with the engagement pin (9) by at least one groove (3) of the sliding cam system, which groove (3) has at least one ejection ramp (4), and wherein, within the housing (6), the engagement pin (9) has a permanent holding magnet (11) and, adjoining it, is a controlling stationary coil core (9) which can be magnetized by an electric coil (7), and the engagement pin (9) is spring-loaded in the direction of the sliding cam (2), and wherein an actuating device is installed at least at that end region of the engagement pin (9) which faces the sliding cam (2), which actuating device is active in the region of the run-out of the ejection ramp (4) to the high circle (18) and generates an additional force on the engagement pin (9) in the direction of the housing (6).
Abstract:
A variable valve apparatus for an internal combustion engine includes a control shaft, a camshaft having first and second camshaft members rotatable relative to each other, a rotary cam rotating together with the second camshaft member for opening and closing of an exhaust valve, an eccentric drive cam rotating together with the first camshaft member, a rocker arm caused to swing with rotation of the eccentric drive cam, a swing cam caused to swing by the rocker arm for opening and closing of an intake valve, a control cam formed on the control shaft to change an operating position of the rocker arm according to a rotational phase of the control shaft and vary the amount of swinging movement of the swing cam, a phase control mechanism adapted to control a relative rotational phase of the first and second camshaft members and an actuator for rotating the control shaft.
Abstract:
Actuator device of a sliding cam system, having at least one sliding cam (2) and having an engagement pin (9) which protrudes out of a housing (6), wherein the housing (6) can be fastened to a component of a cylinder head or to the cylinder head of an internal combustion engine, and it is possible for contact to be made with the engagement pin (9) by at least one groove (3) of the sliding cam system, which groove (3) has at least one ejection ramp (4), and wherein, within the housing (6), the engagement pin (9) has a permanent holding magnet (11) and, adjoining it, is a controlling stationary coil core (9) which can be magnetized by an electric coil (7), and the engagement pin (9) is spring-loaded in the direction of the sliding cam (2), and wherein an actuating device is installed at least at that end region of the engagement pin (9) which faces the sliding cam (2), which actuating device is active in the region of the run-out of the ejection ramp (4) to the high circle (18) and generates an additional force on the engagement pin (9) in the direction of the housing (6).