Abstract:
A method of making a planar, subsurface electronic circuit having at least one electronic circuit component assembled therewith is disclosed. First, three dimensional, essentially square channels interspersed with lands are formed within a dielectric material on a substrate. The channels are then filled in one pass with a curable polymeric material containing a conductive metal filler so that the upper surfaces of the circuit trace formed by this conductive material are at essentially the same level as the upper surface of the lands. Circuit components are place to engage the conductive material. The curable material is then cured after placing the electronic component(s).
Abstract:
The present invention comprises an electrical contact having solid homogenous conductive particles on the contact surface. The particles are of greater hardness than that of the contact material to deform the contact material and cause breakage or fracture of the oxide or other contaminating layer, or to penetrate the contaminating layer. The particles are applied to the contact surface by a technique which results in the particles being intimately bonded to the contact surface, usually as a layer of particles. A preferable technique for such particle application is hypervelocity oxygen fuel spraying (HVOF) or plasma spraying, by which the particles are embedded on the contact surfaces to provide a substantially permanent interparticle bond between the applied particles and the contact material.
Abstract:
A method of providing a thermally conductive connection between spaced surfaces includes (a) mixing a thermally conductive filler containing a liquid metal into an unhardened matrix material, and (b) contacting the unhardened matrix material and randomly dispersed, separate spaced non-solidified regions of filler within the unhardened matrix material to the surfaces. A solid mechanical bond may be provided by hardening the matrix material or by providing a separate adhesive between the surfaces. Preferably, the regions of filler form separate spaced continuous thermally and electrically conductive paths between the surfaces.
Abstract:
A printed circuit module, particularly for electronic applications and equipment, comprising a rigid or flexible circuit carrier substrate (1), conductive traces (2) printed on the substrate, and electronic components (5) for electrical connection thereto. The conductive traces comprise a printed ink layer having fine conductive particles embedded therein. The ink is rendered conductive by a touch-contact distribution of the particles in the printed ink layer. The conductive particles comprise electrically conductive crystallites (8) composed of a non-oxidizable crystalline compound of an element of sub-group IV of the Periodic Table, along with nitrogen or carbon. The electronic components (5) are electrically connected to the conductive traces (2) with an anisotropic adhesive (7). The adhesive may also contain the crystallites to effect an electrical connection between the conductive traces (2 ) and the contact areas (6 ) of electronic components (5 ) .
Abstract:
Electrically conductive elements on two substrates can be electrically interconnected by an adhesive tape containing electrically conductive particles, most of which are substantially uniformly spaced from their six nearest neighbors. Preferably the particles are spherical and of substantially equal diameter slightly exceeding the thickness of the adhesive layer. The adhesive tape can be made by forming a dense monolayer of the particles, covering a stretchable adhesive layer with that dense monolayer, biaxially stretching the adhesive layer to separate each particle from other particles of the monolayer, and then embedding the particles either into that adhesive layer or into the adhesive layer of another tape.
Abstract:
An electrically conductive cement having substantially stable conductivity and resistance characteristics under high humidity conditions comprises a mixture of two epoxy resins with the proportion of each epoxy resin adjusted to provide a volumetric shrinkage in the mixture in the 4 to 16% and a conductive silver particular filler including agglomerates having size and surface characteristics that maintain stable electrical contact with an electrical component lead. The epoxy mixture is preferably a combination of a high-shrinkage epoxy resin and a lower-shrinkage epoxy resin in the appropriate amounts of each so as to produce the desired volumetric shrinkage characteristic. The conductive particle filler is preferably an admixture of silver flakes, silver powder, and an effective amount of silver agglomerates. The agglomerates are irregularly shaped particles having multiple surface indentations and recesses to produce many rough-edged salients or ridges and having a particle length, width, and thickness aspect ratio of about 1:1:1. An effective amount of such agglomerates appears to effect penetration of surface oxides when establishing the cemented connection as a result of the volumetric shrinkage of the polymeric carrier upon curing.
Abstract:
A liquid crystal apparatus in which an anisotropic conductive layer made of organic resin containing several electrically conductive particles having substantially identical particle sizes is disposed between lead electrodes of a liquid crystal device and the lead electrodes of a drive circuit board, thermocompression bonding being applied to make the electrically conductive particles in direct contact with both lead electrodes to allow both lead electrodes to be electrically connected with each other. Further, at least one of the lead electrodes of a common electrode in the liquid crystal device and of the circuit board corresponding to the common electrode includes a number of separated electrodes that are spaced apart, and the pitches and widths of the separated electrodes are in the range of .+-.30% around the average values for pitch and width for the separated electrodes.
Abstract:
A method for selectively bonding a substrate having an electroconductive pattern to another substrate at selected portions of the pattern. An adhesive layer is formed on the selected portion of the pattern by the electrodeposition of a high molecular resin and the substrate is then bonded to the other substrate by means of the adhesive layer.
Abstract:
PROBLEM TO BE SOLVED: To form an inexpensive and highly reliable connection structure capable of simplifying a manufacturing process by connecting a connecting electrode having organic films as an oxidation preventing film using a conductive adhesive. SOLUTION: This electrode connection method for connecting a first connecting electrode 2 to a second connecting electrode 10 through the conductive adhesive 9 interposed between these electrodes includes an organic film forming process to provide an organic film 6 on the surface of at least the first connecting electrode, and an electrode connecting process to connect the first connecting electrode to the second connecting electrode through the conductive adhesive. In the electrode connecting process, an organic film decomposing component blended in the conductive adhesive is made to act on the organic film, and the organic film is decomposed to perform connection between these connecting electrodes. COPYRIGHT: (C)2011,JPO&INPIT