Abstract:
A microelectronic assembly and method for fabricating the same are described. In an example, a microelectronic assembly includes a microelectronic device having a surface with one or more areas to receive one or more solder balls, the one or more areas having a surface finish comprising Ni. A solder material comprising Cu, such as flux or paste, is applied to the Ni surface finish and one or more solder balls are coupled to the microelectronic device by a reflow process that forms a solder joint between the one or more solder balls, the solder material comprising Cu, and the one or more areas having a surface finish comprising Ni.
Abstract:
A method for manufacturing a substrate for mounting a semiconductor element includes: a step for forming a predetermined resist pattern by affixing resists on both faces of a base material including a metallic thin plate and using the resist of one of the faces as a masking for plating; a step for performing an etching of a predetermined position on a base material exposed from the resist pattern; a step for forming a plating layer having at least three layers including a lower, a middle, and an upper layer on the etched base material; a step for separating the resists affixed to both faces of a base material; and a step for performing an etching of the middle plating layer to make the middle plating layer narrower than the upper and lower plating layers.
Abstract:
A circuit component mounting device includes a resin substrate, vias, a circuit component composed of a main body and electrode portions, a solder, and an insulative sealing resin that covers the circuit component and the solder. The device further includes a base metal pattern which covers parts of the principal face of the resin substrate where the vias are exposed and is composed of a Cu layer and a Ni layer and a copper plated pattern which is provided on the base metal pattern and is composed of a Cu layer, a Ni layer, and an Au layer. The circuit component is provided on the copper plated pattern. The solder allows the copper plated pattern and the circuit component to adhere to each other.
Abstract:
A laminate comprising metal layers separated by an etchant barrier to control depth of etching of the laminate, the barrier being etchable by an etchant which is not an etchant for the layers. A cable incorporating such a laminate and having relatively flexible conductors integral with relatively rigid terminals. A method of making such a cable, using the laminate, by selectively etching the layers down to the barrier to form the conductors and terminals, stripping the barrier and laminating the conductor with an insulating material preferably extending over at least a portion of the terminals to reinforce the conductor terminal transition and a cable when made of such a method.
Abstract:
Die Erfindung betrifft ein Bauelement (100) aufweisend eine erste Komponente (1), eine zweite Komponente (2), ein Verbindungselement (3), das zwischen der ersten Komponente (1) und der zweiten Komponente (2) angeordnet ist, wobei das Verbindungselement (3) zumindest eine erste Phase (31) aufweist, wobei die erste Phase (31) Silber (Me5) und mindestens vier weitere Metalle (Me1, Me2, Me3, Me4) aufweist, wobei die Metalle voneinander verschieden sind und geeignet sind, bei einer Verarbeitungstemperatur von kleiner 200 °C zu reagieren, so dass ein thermomechanisch stabiles Verbindungselement (3) erzeugt ist. Das Verbindungselement (3) kann auch eine zweite Phase (32) aufweisen, die mit der ersten Phase (31) als Schichtsystem ausgeformt ist, wobei die zweite Phase (32) Silber und mindestens zwei weitere Metalle aufweist, die auch in der ersten Phase (31) vorhanden sind, wobei der Anteil (c15) an Silber in der ersten Phase (31) größer als der Anteil (c25) an Silber in der jeweiligen zweiten Phase (32) ist. Me1 kann Nickel, Platin oder Palladium sein, Me2 kann Indium sein, Me3 kann Zinn sein und Me4 kann Gold sein. Die zweite Komponente (2) kann eine lichtemittierende Leuchtdiode (kurz LED) umfassen. Im Verfahren zur Herstellung des Bauelements (100) werden Schichten aus den Metallen (Me1-Me5) auf die erste und/oder zweite Komponente (1, 2) aufgebracht und auf maximal 200 °C zur Ausbildung des Verbindungselements (3) geheizt.
Abstract:
This disclosure relates to a transmission line for high performance radio frequency (RF) applications. One such transmission line can include a bonding layer configured to receive an RF signal, a barrier layer, a diffusion barrier layer, and a conductive layer proximate to the diffusion barrier layer. The diffusion barrier layer can have a thickness that allows a received RF signal to penetrate the diffusion barrier layer to the conductive layer. In certain implementations, the diffusion barrier layer can be nickel. In some of these implementations, the transmission line can include a gold bonding layer, a palladium barrier layer, and a nickel diffusion barrier layer.
Abstract:
Articles, such as printed circuit boards, that include electrodeposited coatings, as well as electrodeposition processes for forming such coatings are described herein. In one aspect, a method of forming a conductive region on a printed circuit board structure is provided. The method comprises electrodepositing a first layer of a coating on a portion of a printed circuit board structure. The first layer comprises an alloy comprising nickel and tungsten. The weight percentage of tungsten in the first layer is between 10% and 35%. The first layer has a nanocrystalline grain size. The method further comprises electrodepositing a second layer of the coating formed over the first layer.
Abstract:
Disclosed are a printed circuit board and a method for manufacturing the same. The printed circuit board includes a core insulating layer, at least one via formed through the core insulating layer, an inner circuit layer buried in the core insulating layer, and an outer circuit layer on a top surface or a bottom surface of the core insulating layer, wherein the via includes a first part, a second part below the first part, a third part between the first and second parts, and at least one barrier layer including a metal different from a metal of the first to third parts. The inner circuit layer and the via are simultaneously formed so that the process steps are reduced. Since odd circuit layers are provided, the printed circuit board has a light and slim structure.