Abstract:
A spectroscopic scatterometer detects both zero order and higher order radiation diffracted from an illuminated spot on a target grating. The apparatus forms and detects a spectrum of zero order (reflected) radiation, and separately forms and detects a spectrum of the higher order diffracted radiation. Each spectrum is formed using a symmetrical phase grating, so as to form and detect a symmetrical pair of spectra. The pair of spectra can be averaged to obtain a single spectrum with reduced focus sensitivity. Comparing the two spectra can yield information for improving height measurements in a subsequent lithographic step. The target grating is oriented obliquely so that the zero order and higher order radiation emanate from the spot in different planes. Two scatterometers can operate simultaneously, illuminating the target from different oblique directions. A radial transmission filter reduces sidelobes in the spot and reduces product crosstalk.
Abstract:
A method of determining a position of an imprint template in an imprint lithography apparatus is disclosed. In an embodiment, the method includes illuminating an area of the imprint template in which an alignment mark is expected to be found by scanning an alignment radiation beam over that area, detecting an intensity of radiation reflected or transmitted from the area, and identifying the alignment mark via analysis of the detected intensity.
Abstract:
Disclosed is a device manufacturing method, and accompanying inspection and lithographic apparatuses. The method comprises measuring on the substrate a property such as asymmetry of a first overlay marker and measuring on the substrate a property such as asymmetry of an alignment marker. In both cases the asymmetry is determined. The position of the alignment marker on the substrate is then determined using an alignment system and the asymmetry information of the alignment marker and the substrate aligned using this measured position. A second overlay marker is then printed on the substrate; and a lateral overlay measured on the substrate of the second overlay marker with respect to the first overlay marker using the determined asymmetry information of the first overlay marker.
Abstract:
A lithographic system has a lithographic apparatus, an inspection system and a controller. The lithographic apparatus includes a projection system configured to project a radiation beam onto a layer of material on or above a substrate. The inspection system is configured to inspect a pattern formed on the substrate. The pattern is formed on the substrate by application of the radiation beam. The controller is configured to control the lithographic apparatus to form a pattern based on data from an inspection by the inspection system of a previously exposed pattern.
Abstract:
An apparatus (AS) measures positions of marks (202) on a lithographic substrate (W). An illumination arrangement (940, 962, 964) provides off-axis radiation from at least first and second regions. The first and second source regions are diametrically opposite one another with respect to an optical axis (O) and are limited in angular extent. The regions may be small spots selected according to a direction of periodicity of a mark being measured, or larger segments. Radiation at a selected pair of source regions can be generated by supplying radiation at a single source feed position to a self-referencing interferometer. A modified half wave plate is positioned downstream of the interferometer, which can be used in the position measuring apparatus. The modified half wave plate has its fast axis in one part arranged at 45° to the fast axis in another part diametrically opposite.
Abstract:
In order to improve overlay measurement, product marker gratings on a substrate are measured in a lithographic apparatus by an alignment sensor using scatterometry. Then information relating to the transverse profile of the product marker grating, such as its asymmetry, is determined from the measurement. After printing an overlay marker grating on a resist film, the lateral overlay of the overlay marker grating with respect to the product marker grating is measured by scatterometry and using the determined asymmetry information in combination with a suitable process model. The alignment sensor data may be used to first reconstruct the product grating and this information is fed forward to the scatterometer that measures the stack of product and resist grating and light scattered by the stack is used for reconstruction of a model of the stack to calculate overlay. The overlay may then, optionally, be fed back to the lithographic apparatus for correction of overlay errors.
Abstract:
A metrology apparatus is arranged to illuminate a plurality of targets with an off-axis illumination mode. Images of the targets are obtained using only one first order diffracted beam. Where the target is a composite grating, overlay measurements can be obtained from the intensities of the images of the different gratings. Overlay measurements can be corrected for errors caused by variations in the position of the gratings in an image field.
Abstract:
A lithographic apparatus (LA) prints product features and at least one focus metrology pattern (T) on a substrate. The focus metrology pattern is defined by a reflective reticle and printing is performed using EUV radiation (404) incident at an oblique angle (θ). The focus metrology pattern comprises a periodic array of groups of first features (422). A spacing (S1) between adjacent groups of first features is much greater than a dimension (CD) of the first features within each group. Due to the oblique illumination, the printed first features become distorted and/or displaced as a function of focus error. Second features 424 may be provided as a reference against which displacement of the first features may be seen. Measurement of this distortion and/or displacement may be by measuring asymmetry as a property of the printed pattern. Measurement can be done at longer wavelengths, for example in the range 350-800 nm.
Abstract:
An overlay measurement apparatus has a polarized light source for illuminating a sample with a polarized light beam and an optical system to capture light that is scattered by the sample. The optical system includes a polarizer for transmitting an orthogonal polarization component that is orthogonal to a polarization direction of the polarized light beam. A detector measures intensity of the orthogonal polarization component. A processing unitise connected to the detector, and is arranged to process the orthogonal polarization component for overlay metrology measurement using asymmetry data derived from the orthogonal polarization component.(Figure 2)