Abstract:
Methods for fabricating bipolar junction transistors, bipolar junction transistors made by the methods, and design structures for a bipolar junction transistor. The bipolar junction transistor (80) includes a dielectric layer (32) on an intrinsic base (84) and an extrinsic base (82) at least partially separated from the intrinsic base by the dielectric layer. An emitter opening (52) extends through the extrinsic base and the dielectric layer. The dielectric layer is recessed laterally relative to the emitter opening to define a cavity (60a, 60b) between the intrinsic base and the extrinsic base. The cavity is filled with a semiconductor layer (64) that physically links the extrinsic base and the intrinsic base together.
Abstract:
Device structures, fabrication methods, operating methods, and design structures for a silicon controlled rectifier. The method includes applying a mechanical stress to a region of a silicon controlled rectifier (SCR) at a level sufficient to modulate a trigger current of the SCR. The device and design structures include an SCR (62) with an anode (63), a cathode (65), a first region (14), and a second region (16) of opposite conductivity type to the first region. The first and second regions of the SCR are disposed in a current-carrying path between the anode and cathode of the SCR. A layer (26) is positioned on a top surface of a semiconductor substrate (30) relative to the first region and configured to cause a mechanical stress in the first region of the SCR at a level sufficient to modulate a trigger current of the SCR.
Abstract:
Methods for fabricating bipolar junction transistors, bipolar junction transistors made by the methods, and design structures for a bipolar junction transistor. The bipolar junction transistor includes a dielectric layer on an intrinsic base and an extrinsic base at least partially separated from the intrinsic base by the dielectric layer. An emitter opening extends through the extrinsic base and the dielectric layer. The dielectric layer is recessed laterally relative to the emitter opening to define a cavity between the intrinsic base and the extrinsic base. The cavity is filled with a semiconductor layer that physically links the extrinsic base and the intrinsic base together.
Abstract:
Disclosed are embodiments of an improved transistor structure (100) (e.g., a bipolar transistor (BT) structure or heterojunction bipolar transistor (HBT) structure) and a method of forming the transistor structure (100). The structure embodiments can incorporate a dielectric layer (130) sandwiched between an intrinsic base layer (120) and a raised extrinsic base layer (140) to reduce collector-base capacitance Ccb, a sidewall-defined conductive strap (150) for an intrinsic base layer (120) to extrinsic base layer (140) link-up region to reduce base resistance Rb and a dielectric spacer (160) between the extrinsic base layer (140) and an emitter layer (180) to reduce base- emitter Cbe capacitance. The method embodiments allow for self-aligning of the emitter to base regions and further allow the geometries of different features (e.g., the thickness of the dielectric layer (130), the width of the conductive strap (150), the width of the dielectric spacer (160) and the width of the emitter layer (180)) to be selectively adjusted in order to optimize transistor performance.
Abstract:
Methods for fabricating bipolar junction transistors, bipolar junction transistors made by the methods, and design structures for a bipolar junction transistor. The bipolar junction transistor (80) includes a dielectric layer (32) on an intrinsic base (84) and an extrinsic base (82) at least partially separated from the intrinsic base by the dielectric layer. An emitter opening (52) extends through the extrinsic base and the dielectric layer. The dielectric layer is recessed laterally relative to the emitter opening to define a cavity (60a, 60b) between the intrinsic base and the extrinsic base. The cavity is filled with a semiconductor layer (64) that physically links the extrinsic base and the intrinsic base together.
Abstract:
Verfahren zum Herstellen von Bipolartransistoren, Bipolartransistoren, die mittels der Verfahren hergestellt werden, sowie Entwurfsstrukturen für einen Bipolartransistor. Der Bipolartransistor (80) beinhaltet eine dielektrische Schicht (32) auf einer intrinsischen Basis (84) und eine extrinsische Basis (82), die durch die dielektrische Schicht wenigstens teilweise von der intrinsischen Basis getrennt ist. Eine Emitter-Öffnung (52) erstreckt sich durch die extrinsische Basis und die dielektrische Schicht hindurch. Die dielektrische Schicht ist lateral relativ zu der Emitter-Öffnung vertieft, um einen Hohlraum (60a, 60b) zwischen der intrinsischen Basis und der extrinsischen Basis zu definieren. Der Hohlraum ist mit einer Halbleiterschicht (64) gefüllt, welche die extrinsische Basis und die intrinsische Basis physisch miteinander verbindet.
Abstract:
Verfahren zur Bildung eines Transistors, aufweisend: Bilden einer intrinsischen Basisschicht (120) auf einer Oberseite eines Halbleitersubstrats (101); Bilden einer dielektrischen Schicht (130) auf der intrinsischen Basisschicht; Bilden einer extrinsischen Basisschicht (140) auf der dielektrischen Schicht; Bilden mindestens einer zweiten dielektrischen (302) Schicht auf der extrinsischen Basisschicht; Bilden einer Öffnung (315), die durch die mindestens eine zweite dielektrische Schicht zu der extrinsischen Basisschicht verläuft, wobei die Öffnung eine erste vertikale Seitenwand (306) aufweist; Bilden einer Seitenwand-Abstandsopferschicht (307) auf der ersten vertikalen Seitenwand; Bilden einer dielektrischen Opferschicht (309) auf einer freiliegenden Fläche der extrinsischen Basisschicht benachbart zu der Seitenwand-Abstandsopferschicht; selektives Entfernen der Seitenwand-Abstandsopferschicht; Bilden, zwischen der ersten vertikalen Seitenwand und der dielektrischen Opferschicht, eines Grabens (170), der durch die extrinsische Basisschicht und die erste dielektrische Schicht zu der intrinsischen Basisschicht verläuft, derart, dass der Graben an einen Umfang der Öffnung angepasst ist und eine zweite vertikale Seitenwand (175) aufweist, die direkt unter der ersten vertikalen Seitenwand mit dieser ausgerichtet ist; Bilden eines leitenden Streifens (150) innerhalb des Grabens benachbart zu der Seitenwand derart, dass der leitende Streifen die intrinsische Basisschicht mit der extrinsischen Basisschicht elektrisch verbindet; nach dem Bilden des leitenden Streifens, Bilden eines ersten Abschnitts (161) einer dielektrischen Abstandsschicht auf der ersten vertikalen Seitenwand (306), und der mindestens eine Oberseite des leitenden Streifens bedeckt; ...
Abstract:
Disclosed are embodiments of a bipolar or heterojunction bipolar transistor and a method of forming the transistor. The transistor can incorporate a dielectric layer sandwiched between an intrinsic base layer and a raised extrinsic base layer to reduce collector-base capacitance Ccb, a sidewall-defined conductive strap for an intrinsic base layer to extrinsic base layer link-up region to reduce base resistance Rb and a dielectric spacer between the extrinsic base layer and an emitter layer to reduce base-emitter Cbe capacitance. The method allows for self-aligning of the emitter to base regions and incorporates the use of a sacrificial dielectric layer, which must be thick enough to withstand etch and cleaning processes and still remain intact to function as an etch stop layer when the conductive strap is subsequently formed. A chemically enhanced high pressure, low temperature oxidation (HIPOX) process can be used to form such a sacrificial dielectric layer.
Abstract:
Einheitenstrukturen, Fertigungsverfahren, Betriebsverfahren und Konstruktionsstrukturen für einen siliciumgesteuerten Gleichrichter. Das Verfahren beinhaltet ein Ausüben einer mechanischen Verspannung auf einen Bereich eines siliciumgesteuerten Gleichrichters (SCR) in einem Ausmaß, das zum Modulieren eines Auslösestroms des SCR ausreicht. Die Einheiten- und Konstruktionsstrukturen beinhalten einen SCR (62) mit einer Anode (63), einer Kathode (65), einem ersten Bereich (14) und einem zweiten Bereich (16) mit einem entgegengesetzten Leitfähigkeitstyp gegenüber dem ersten Bereich. Der erste und der zweite Bereich des SCR sind in einem stromführenden Pfad zwischen der Anode und der Kathode des SCR angeordnet. Eine Schicht (26) ist auf einer oberen Fläche eines Halbleitersubstrats (30) relativ zu dem ersten Bereich positioniert und so eingerichtet, dass sie eine mechanische Verspannung in dem ersten Bereich des SCR in einem Ausmaß verursacht, das zum Modulieren eines Auslösestroms des SCR ausreicht.