Abstract:
PROBLEM TO BE SOLVED: To provide a method for manufacturing a non-volatile semiconductor memory cell (SZ) having a separate tunnel window cell (TF). SOLUTION: The method includes the step for forming the window cell (TF) having a tunnel zone (TG), a tunnel layer (4), a tunnel window memory layer (T5), a dielectric tunnel window layer (T6), and a tunnel window control electrode layer (T7), and the step for forming a transistor memory cell (TZ) having a channel zone (KG), a gate layer (3), a memory layer (5), a dielectric layer (6), and a control electrode layer (7). By the manufacturing method, the tunnel zone (TG) is formed in a late implantation step by tunnel implantation (I T ) using the window cell (TF) as a mask. The resulting memory cell has a small area requirement and a high number of program/clear cycles. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a nonvolatile memory being optimum for application requiring small quantity memory. SOLUTION: In a nonvolatile semiconductor memory device having first and second floating gate transistors coupled in series, the floating gate transistor has a floating gate. A programming means coupled to the first and second floating gate transistors are operable to place a selected electrical charge in one of the floating gates and less than the selected electrical charge in the other floating gate to represent either of a first or second binary value. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
Each memory cell is a memory transistor which is provided with a gate electrode (2) on the upper surface of a semiconductor body. Said gate electrode is disposed in a trench between a source area (3) and a drain area (4) which are formed in the semiconductor material. The gate electrode is separated from the semiconductor material by dielectric material. A series of oxide nitride-oxide layers (5, 6, 7) is disposed between the source area and the drain area and between the drain area and the gate electrode in order to capture charge carriers on the source and drain.
Abstract:
In verschiedenen Ausführungsformen ist ein Pegelumsetzer vorgesehen. Der Pegelumsetzer umfasst einen Anschluss für niedrige Versorgungsspannung, einen Anschluss für hohe Versorgungsspannung, mindestens einen Eingangsanschluss, mindestens einen Ausgangsanschluss und einen Latch. Der Latch ist zu Folgendem ausgelegt: Speichern eines vorbestimmten logischen Zustands durch Setzen eines Speicherknotens auf einen Spannungspegel als Antwort auf ein Empfangen eines vorbestimmten Spannungspegels an dem mindestens einen Eingangsanschluss; Ändern des Spannungspegels an dem Speicherknoten als Antwort auf ein Empfangen einer oder mehrerer geänderten Spannungen an dem Anschluss für hohe Versorgungsspannung und/oder an dem Anschluss für hohe Versorgungsspannung; und Ausgeben des vorbestimmten logischen Zustands mit dem geänderten Spannungspegel aus dem Speicherknoten an den mindestens einen Ausgang.
Abstract:
The semiconductor element has a semiconductor substrate (1), a semiconductor structure (2) formed in the semiconductor substrate and a sensor element (3). The semiconductor structure has switch arrangement, where the sensor element is arranged directly in the vicinity of the parts of the switch arrangement. The sensor element is formed to generate an electrical signal, which is picked up during irradiation of the semiconductor element by light. Independent claims are included for the following: (1) a sensor element for recognition of light affect on switching configurations in semiconductor structures; and (2) a method for protecting light affects in a semiconductor component.