Abstract:
A method of fabricating a semiconductor connective region of a first conductivity type through a semiconductor layer of a second conductivity type which at least partly separates a bulk portion of semiconductor body (substrate) of the first conductivity type from a semiconductor well of the first conductivity type includes a step of implanting ions into a portion of the layer to convert the conductivity of the implanted portion to the first conductivity type. This electrically connects the well to the bulk portion of the body. Any biasing potential applied to the bulk portion of the body is thus applied to the well. This eliminates any need to form a contact in the well for biasing the well and thus allows the well to be reduced in size.
Abstract:
A method of fabricating an integrated circuit in and on a semiconductor substrate with deep implantations by applying a scattered ion capturing layer in the resist mask opening tocapture any implanted ions scattered in the resist and deflected out of the resist into the mask opening to prevent these ions from reaching the semiconductor substrate and affecting the concentration of ions at the edge of the mask and thus the performance of the integrated circuit.
Abstract:
In a method of fabricating a semiconductor device, a level of metal is formed within an interval dielectric. The level of metal includes a first metal line separated from a second metal line by a region of the interlevel dielectric. The region of interlevel dielectric is removed between the first metal line and the second metal line. A high-k dielectric is formed between the first metal line and the second metal line in the region where the interlevel dielectric was removed such that a capacitor is formed by the first metal line, the second metal line and the high-k dielectric.
Abstract:
In a method of fabricating a semiconductor device, a level of metal is formed within an interval dielectric. The level of metal includes a first metal line separated from a second metal line by a region of the interlevel dielectric. The region of interlevel dielectric is removed between the first metal line and the second metal line. A high-k dielectric is formed between the first metal line and the second metal line in the region where the interlevel dielectric was removed such that a capacitor is formed by the first metal line, the second metal line and the high-k dielectric.
Abstract:
An apparatus for processing a substrate wafer wherein the apparatus includes a reaction chamber, a wafer holder intended to hold the substrate wafer, and a susceptor. A temperature sensor, preferably a thermocouple with two junctions, is provided for measuring the difference between the temperatures at the site of the susceptor and at a site between the susceptor and the substrate wafer.